Data-driven causal effect estimation based on graphical causal modelling: A survey

D Cheng, J Li, L Liu, J Liu, TD Le - ACM Computing Surveys, 2024 - dl.acm.org
In many fields of scientific research and real-world applications, unbiased estimation of
causal effects from non-experimental data is crucial for understanding the mechanism …

Using copulas to enable causal inference from nonexperimental data: Tutorial and simulation studies.

F Falkenström, S Park, CN McIntosh - Psychological methods, 2023 - psycnet.apa.org
Causal inference in psychological research is typically hampered by unobserved
confounding. A copula-based method can be used to statistically control for this problem …

Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs

E Perkovi, J Textor, M Kalisch, MH Maathuis - Journal of Machine …, 2018 - jmlr.org
We present a graphical criterion for covariate adjustment that is sound and complete for four
different classes of causal graphical models: directed acyclic graphs (DAGs), maximal …

Classifying causal structures: Ascertaining when classical correlations are constrained by inequalities

S Khanna, MM Ansanelli, MF Pusey, E Wolfe - Physical Review Research, 2024 - APS
The classical causal relations between a set of variables, some observed and some latent,
can induce both equality constraints (typically conditional independencies) as well as …

Инфологические модели как инструмент исследования

ВК Раев - Славянский форум, 2020 - elibrary.ru
Статья исследует инфологические модели как особый вид информационных моделей.
Инфологические модели являются одними из наименее исследованных моделей в …

Causal identification under Markov equivalence: calculus, algorithm, and completeness

A Jaber, A Ribeiro, J Zhang… - Advances in Neural …, 2022 - proceedings.neurips.cc
One common task in many data sciences applications is to answer questions about the
effect of new interventions, like:what would happen to $ Y $ if we make $ X $ equal to $ x …

Estimating possible causal effects with latent variables via adjustment

TZ Wang, T Qin, ZH Zhou - International Conference on …, 2023 - proceedings.mlr.press
Causal effect identification is a fundamental task in artificial intelligence. A most ideal
scenario for causal effect identification is that there is a directed acyclic graph as a prior …

Информационные модели как метод познания

ВК Раев - Славянский форум, 2020 - elibrary.ru
Статья исследует информационные модели как метод познания. Описаны методы
построения информационных моделей. Описаны три группы моделей по степени …

Finding and listing front-door adjustment sets

H Jeong, J Tian, E Bareinboim - Advances in Neural …, 2022 - proceedings.neurips.cc
Identifying the effects of new interventions from data is a significant challenge found across a
wide range of the empirical sciences. A well-known strategy for identifying such effects is …

Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables

J Runge - Advances in Neural Information Processing …, 2021 - proceedings.neurips.cc
The problem of selecting optimal backdoor adjustment sets to estimate causal effects in
graphical models with hidden and conditioned variables is addressed. Previous work has …