Modern Koopman theory for dynamical systems

SL Brunton, M Budišić, E Kaiser, JN Kutz - arXiv preprint arXiv:2102.12086, 2021 - arxiv.org
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …

Data-driven modeling for unsteady aerodynamics and aeroelasticity

J Kou, W Zhang - Progress in Aerospace Sciences, 2021 - Elsevier
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …

Pysindy: a python package for the sparse identification of nonlinear dynamics from data

BM de Silva, K Champion, M Quade… - arXiv preprint arXiv …, 2020 - arxiv.org
PySINDy is a Python package for the discovery of governing dynamical systems models
from data. In particular, PySINDy provides tools for applying the sparse identification of …

Data-driven discovery of Koopman eigenfunctions for control

E Kaiser, JN Kutz, SL Brunton - Machine Learning: Science and …, 2021 - iopscience.iop.org
Data-driven transformations that reformulate nonlinear systems in a linear framework have
the potential to enable the prediction, estimation, and control of strongly nonlinear dynamics …

Promoting global stability in data-driven models of quadratic nonlinear dynamics

AA Kaptanoglu, JL Callaham, A Aravkin, CJ Hansen… - Physical Review …, 2021 - APS
Modeling realistic fluid and plasma flows is computationally intensive, motivating the use of
reduced-order models for a variety of scientific and engineering tasks. However, it is …

Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data

K Kaheman, SL Brunton, JN Kutz - Machine Learning: Science …, 2022 - iopscience.iop.org
The sparse identification of nonlinear dynamics (SINDy) is a regression framework for the
discovery of parsimonious dynamic models and governing equations from time-series data …

Neural implicit flow: a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data

S Pan, SL Brunton, JN Kutz - Journal of Machine Learning Research, 2023 - jmlr.org
High-dimensional spatio-temporal dynamics can often be encoded in a low-dimensional
subspace. Engineering applications for modeling, characterization, design, and control of …

Benchmarking sparse system identification with low-dimensional chaos

AA Kaptanoglu, L Zhang, ZG Nicolaou, U Fasel… - Nonlinear …, 2023 - Springer
Sparse system identification is the data-driven process of obtaining parsimonious differential
equations that describe the evolution of a dynamical system, balancing model complexity …

Koopman analysis by the dynamic mode decomposition in wind engineering

CY Li, Z Chen, X Zhang, KT Tim, C Lin - Journal of Wind Engineering and …, 2023 - Elsevier
The Koopman theory, a concept to globally model nonlinear signals by a linear Hamiltonian,
has been at the frontier of fluid mechanics research for the last decade. Wind engineering …

Sparse nonlinear models of chaotic electroconvection

Y Guan, SL Brunton… - Royal Society Open …, 2021 - royalsocietypublishing.org
Convection is a fundamental fluid transport phenomenon, where the large-scale motion of a
fluid is driven, for example, by a thermal gradient or an electric potential. Modelling …