Generative adversarial network in medical imaging: A review

X Yi, E Walia, P Babyn - Medical image analysis, 2019 - Elsevier
Generative adversarial networks have gained a lot of attention in the computer vision
community due to their capability of data generation without explicitly modelling the …

AI-based reconstruction for fast MRI—A systematic review and meta-analysis

Y Chen, CB Schönlieb, P Liò, T Leiner… - Proceedings of the …, 2022 - ieeexplore.ieee.org
Compressed sensing (CS) has been playing a key role in accelerating the magnetic
resonance imaging (MRI) acquisition process. With the resurgence of artificial intelligence …

Adaptive diffusion priors for accelerated MRI reconstruction

A Güngör, SUH Dar, Ş Öztürk, Y Korkmaz… - Medical image …, 2023 - Elsevier
Deep MRI reconstruction is commonly performed with conditional models that de-alias
undersampled acquisitions to recover images consistent with fully-sampled data. Since …

Unsupervised MRI reconstruction via zero-shot learned adversarial transformers

Y Korkmaz, SUH Dar, M Yurt, M Özbey… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Supervised reconstruction models are characteristically trained on matched pairs of
undersampled and fully-sampled data to capture an MRI prior, along with supervision …

Self‐supervised learning of physics‐guided reconstruction neural networks without fully sampled reference data

B Yaman, SAH Hosseini, S Moeller… - Magnetic resonance …, 2020 - Wiley Online Library
Purpose To develop a strategy for training a physics‐guided MRI reconstruction neural
network without a database of fully sampled data sets. Methods Self‐supervised learning via …

A survey on incorporating domain knowledge into deep learning for medical image analysis

X Xie, J Niu, X Liu, Z Chen, S Tang, S Yu - Medical Image Analysis, 2021 - Elsevier
Although deep learning models like CNNs have achieved great success in medical image
analysis, the small size of medical datasets remains a major bottleneck in this area. To …

Federated learning of generative image priors for MRI reconstruction

G Elmas, SUH Dar, Y Korkmaz… - … on Medical Imaging, 2022 - ieeexplore.ieee.org
Multi-institutional efforts can facilitate training of deep MRI reconstruction models, albeit
privacy risks arise during cross-site sharing of imaging data. Federated learning (FL) has …

The role of generative adversarial networks in brain MRI: a scoping review

H Ali, MR Biswas, F Mohsen, U Shah, A Alamgir… - Insights into …, 2022 - Springer
The performance of artificial intelligence (AI) for brain MRI can improve if enough data are
made available. Generative adversarial networks (GANs) showed a lot of potential to …

Multimodal transformer for accelerated MR imaging

CM Feng, Y Yan, G Chen, Y Xu, Y Hu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Accelerated multi-modal magnetic resonance (MR) imaging is a new and effective solution
for fast MR imaging, providing superior performance in restoring the target modality from its …

mustGAN: multi-stream generative adversarial networks for MR image synthesis

M Yurt, SUH Dar, A Erdem, E Erdem, KK Oguz… - Medical image …, 2021 - Elsevier
Multi-contrast MRI protocols increase the level of morphological information available for
diagnosis. Yet, the number and quality of contrasts are limited in practice by various factors …