Artificial intelligence-enabled quantitative phase imaging methods for life sciences

J Park, B Bai, DH Ryu, T Liu, C Lee, Y Luo, MJ Lee… - Nature …, 2023 - nature.com
Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and
label-free investigation of the physiology and pathology of biological systems. This review …

A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

Generalized decoding for pixel, image, and language

X Zou, ZY Dou, J Yang, Z Gan, L Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present X-Decoder, a generalized decoding model that can predict pixel-level
segmentation and language tokens seamlessly. X-Decoder takes as input two types of …

A comprehensive survey of recent trends in deep learning for digital images augmentation

NE Khalifa, M Loey, S Mirjalili - Artificial Intelligence Review, 2022 - Springer
Deep learning proved its efficiency in many fields of computer science such as computer
vision, image classifications, object detection, image segmentation, and more. Deep …

[HTML][HTML] Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation

M Yeung, E Sala, CB Schönlieb, L Rundo - Computerized Medical Imaging …, 2022 - Elsevier
Automatic segmentation methods are an important advancement in medical image analysis.
Machine learning techniques, and deep neural networks in particular, are the state-of-the-art …

Deep learning in multi-object detection and tracking: state of the art

SK Pal, A Pramanik, J Maiti, P Mitra - Applied Intelligence, 2021 - Springer
Object detection and tracking is one of the most important and challenging branches in
computer vision, and have been widely applied in various fields, such as health-care …

Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective

MD Hossain, D Chen - ISPRS Journal of Photogrammetry and Remote …, 2019 - Elsevier
Image segmentation is a critical and important step in (GEographic) Object-Based Image
Analysis (GEOBIA or OBIA). The final feature extraction and classification in OBIA is highly …

Understanding deep learning techniques for image segmentation

S Ghosh, N Das, I Das, U Maulik - ACM computing surveys (CSUR), 2019 - dl.acm.org
The machine learning community has been overwhelmed by a plethora of deep learning--
based approaches. Many challenging computer vision tasks, such as detection, localization …

Review on computer vision-based crack detection and quantification methodologies for civil structures

J Deng, A Singh, Y Zhou, Y Lu, VCS Lee - Construction and Building …, 2022 - Elsevier
Computer vision-based crack analysis for civil infrastructure has become popular to
automatically process inspection imaging data for crack detection, localisation and …

Remote sensing image segmentation advances: A meta-analysis

I Kotaridis, M Lazaridou - ISPRS Journal of Photogrammetry and Remote …, 2021 - Elsevier
The advances in remote sensing sensors during the last two decades have led to the
production of very high spatial resolution multispectral images. In order to adapt to this rapid …