Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network

X Chen, H Shao, Y Xiao, S Yan, B Cai, B Liu - Mechanical Systems and …, 2023 - Elsevier
Most of the existing research on unsupervised cross-domain intelligent fault diagnosis is
based on single-source domain adaptation, which fails to simultaneously utilize various …

Towards trustworthy rotating machinery fault diagnosis via attention uncertainty in transformer

Y Xiao, H Shao, M Feng, T Han, J Wan, B Liu - Journal of Manufacturing …, 2023 - Elsevier
To enable researchers to fully trust the decisions made by deep diagnostic models,
interpretable rotating machinery fault diagnosis (RMFD) research has emerged. Existing …

Generalized MAML for few-shot cross-domain fault diagnosis of bearing driven by heterogeneous signals

J Lin, H Shao, X Zhou, B Cai, B Liu - Expert Systems with Applications, 2023 - Elsevier
Despite a few recent meta-learning studies have facilitated few-shot cross-domain fault
diagnosis of bearing, they are limited to homogenous signal analysis and have challenges …

Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine

K Zhao, Z Jia, F Jia, H Shao - Engineering Applications of Artificial …, 2023 - Elsevier
Remaining useful life (RUL) prediction is the core research task of aero-engine prognostics
health management (PHM), which is crucial to promoting the safety, reliability and economy …

Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing

Y Zhang, JC Ji, Z Ren, Q Ni, F Gu, K Feng, K Yu… - Reliability Engineering & …, 2023 - Elsevier
Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which
plays a vital role in guaranteeing the reliability, safety, and economical efficiency of …

FGDAE: A new machinery anomaly detection method towards complex operating conditions

S Yan, H Shao, Z Min, J Peng, B Cai, B Liu - Reliability Engineering & …, 2023 - Elsevier
Recent studies on machinery anomaly detection only based on normal data training models
have yielded good results in improving operation reliability. However, most of the studies …

Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy

K Zhao, J Hu, H Shao, J Hu - Reliability Engineering & System Safety, 2023 - Elsevier
Transfer learning can effectively solve the target task identification problem with the
prerequisite of sharing all user data and target data, and has become one of the most …

Hybrid robust convolutional autoencoder for unsupervised anomaly detection of machine tools under noises

S Yan, H Shao, Y Xiao, B Liu, J Wan - Robotics and Computer-Integrated …, 2023 - Elsevier
Anomaly detection of machine tools plays a vital role in the machinery industry to sustain
efficient operation and avoid catastrophic failures. Compared to traditional machine learning …

Bayesian variational transformer: A generalizable model for rotating machinery fault diagnosis

Y Xiao, H Shao, J Wang, S Yan, B Liu - Mechanical Systems and Signal …, 2024 - Elsevier
Transformer has been widely applied in the research of rotating machinery fault diagnosis
due to its ability to explore the internal correlation of vibration signals. However, challenges …

A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains

K Zhao, F Jia, H Shao - Knowledge-Based Systems, 2023 - Elsevier
Transfer learning based on a single source domain to a target domain has received a lot of
attention in the cross-domain fault diagnosis tasks of rolling bearing. However, the practical …