AI in health and medicine

P Rajpurkar, E Chen, O Banerjee, EJ Topol - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the
experiences of both clinicians and patients. We discuss key findings from a 2-year weekly …

Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI

B Vasey, M Nagendran, B Campbell, DA Clifton… - bmj, 2022 - bmj.com
A growing number of artificial intelligence (AI)-based clinical decision support systems are
showing promising performance in preclinical, in silico, evaluation, but few have yet …

Capabilities of gpt-4 on medical challenge problems

H Nori, N King, SM McKinney, D Carignan… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) have demonstrated remarkable capabilities in natural
language understanding and generation across various domains, including medicine. We …

Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations

L Seyyed-Kalantari, H Zhang, MBA McDermott… - Nature medicine, 2021 - nature.com
Artificial intelligence (AI) systems have increasingly achieved expert-level performance in
medical imaging applications. However, there is growing concern that such AI systems may …

[HTML][HTML] Significance of machine learning in healthcare: Features, pillars and applications

M Javaid, A Haleem, RP Singh, R Suman… - International Journal of …, 2022 - Elsevier
Abstract Machine Learning (ML) applications are making a considerable impact on
healthcare. ML is a subtype of Artificial Intelligence (AI) technology that aims to improve the …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arXiv preprint arXiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review

AAH de Hond, AM Leeuwenberg, L Hooft… - NPJ digital …, 2022 - nature.com
While the opportunities of ML and AI in healthcare are promising, the growth of complex data-
driven prediction models requires careful quality and applicability assessment before they …

Swarm learning for decentralized and confidential clinical machine learning

S Warnat-Herresthal, H Schultze, KL Shastry… - Nature, 2021 - nature.com
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major
goal of precision medicine,. Patients with leukaemia can be identified using machine …

The value of standards for health datasets in artificial intelligence-based applications

A Arora, JE Alderman, J Palmer, S Ganapathi… - Nature Medicine, 2023 - nature.com
Artificial intelligence as a medical device is increasingly being applied to healthcare for
diagnosis, risk stratification and resource allocation. However, a growing body of evidence …

Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on …

GS Collins, P Dhiman, CLA Navarro, J Ma, L Hooft… - BMJ open, 2021 - bmjopen.bmj.com
Introduction The Transparent Reporting of a multivariable prediction model of Individual
Prognosis Or Diagnosis (TRIPOD) statement and the Prediction model Risk Of Bias …