[HTML][HTML] A survey on few-shot class-incremental learning

S Tian, L Li, W Li, H Ran, X Ning, P Tiwari - Neural Networks, 2024 - Elsevier
Large deep learning models are impressive, but they struggle when real-time data is not
available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for …

A survey of quantization methods for efficient neural network inference

A Gholami, S Kim, Z Dong, Z Yao… - Low-Power Computer …, 2022 - taylorfrancis.com
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …

Constrained few-shot class-incremental learning

M Hersche, G Karunaratne… - Proceedings of the …, 2022 - openaccess.thecvf.com
Continually learning new classes from fresh data without forgetting previous knowledge of
old classes is a very challenging research problem. Moreover, it is imperative that such …

Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima

G Shi, J Chen, W Zhang, LM Zhan… - Advances in neural …, 2021 - proceedings.neurips.cc
This paper considers incremental few-shot learning, which requires a model to continually
recognize new categories with only a few examples provided. Our study shows that existing …

Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning

Z Song, Y Zhao, Y Shi, P Peng… - Proceedings of the …, 2023 - openaccess.thecvf.com
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes
continually from limited samples without forgetting the old classes. The mainstream …

Few-shot class-incremental learning via class-aware bilateral distillation

L Zhao, J Lu, Y Xu, Z Cheng, D Guo… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Few-Shot Class-Incremental Learning (FSCIL) aims to continually learn novel
classes based on only few training samples, which poses a more challenging task than the …

Few-shot class-incremental learning via training-free prototype calibration

QW Wang, DW Zhou, YK Zhang… - Advances in Neural …, 2024 - proceedings.neurips.cc
Real-world scenarios are usually accompanied by continuously appearing classes with
scare labeled samples, which require the machine learning model to incrementally learn …

Synthesized feature based few-shot class-incremental learning on a mixture of subspaces

A Cheraghian, S Rahman… - Proceedings of the …, 2021 - openaccess.thecvf.com
Few-shot class incremental learning (FSCIL) aims to incrementally add sets of novel classes
to a well-trained base model in multiple training sessions with the restriction that only a few …

Margin-based few-shot class-incremental learning with class-level overfitting mitigation

Y Zou, S Zhang, Y Li, R Li - Advances in neural information …, 2022 - proceedings.neurips.cc
Few-shot class-incremental learning (FSCIL) is designed to incrementally recognize novel
classes with only few training samples after the (pre-) training on base classes with sufficient …

Subspace regularizers for few-shot class incremental learning

AF Akyürek, E Akyürek, DT Wijaya… - arXiv preprint arXiv …, 2021 - arxiv.org
Few-shot class incremental learning--the problem of updating a trained classifier to
discriminate among an expanded set of classes with limited labeled data--is a key challenge …