Explaining deep neural networks and beyond: A review of methods and applications

W Samek, G Montavon, S Lapuschkin… - Proceedings of the …, 2021 - ieeexplore.ieee.org
With the broader and highly successful usage of machine learning (ML) in industry and the
sciences, there has been a growing demand for explainable artificial intelligence (XAI) …

Impact of word embedding models on text analytics in deep learning environment: a review

DS Asudani, NK Nagwani, P Singh - Artificial intelligence review, 2023 - Springer
The selection of word embedding and deep learning models for better outcomes is vital.
Word embeddings are an n-dimensional distributed representation of a text that attempts to …

Dos and don'ts of machine learning in computer security

D Arp, E Quiring, F Pendlebury, A Warnecke… - 31st USENIX Security …, 2022 - usenix.org
With the growing processing power of computing systems and the increasing availability of
massive datasets, machine learning algorithms have led to major breakthroughs in many …

Evaluating and aggregating feature-based model explanations

U Bhatt, A Weller, JMF Moura - arXiv preprint arXiv:2005.00631, 2020 - arxiv.org
A feature-based model explanation denotes how much each input feature contributes to a
model's output for a given data point. As the number of proposed explanation functions …

Insomnia: Towards concept-drift robustness in network intrusion detection

G Andresini, F Pendlebury, F Pierazzi… - Proceedings of the 14th …, 2021 - dl.acm.org
Despite decades of research in network traffic analysis and incredible advances in artificial
intelligence, network intrusion detection systems based on machine learning (ML) have yet …

Deepaid: Interpreting and improving deep learning-based anomaly detection in security applications

D Han, Z Wang, W Chen, Y Zhong, S Wang… - Proceedings of the …, 2021 - dl.acm.org
Unsupervised Deep Learning (DL) techniques have been widely used in various security-
related anomaly detection applications, owing to the great promise of being able to detect …

Deep learning for android malware defenses: a systematic literature review

Y Liu, C Tantithamthavorn, L Li, Y Liu - ACM Computing Surveys, 2022 - dl.acm.org
Malicious applications (particularly those targeting the Android platform) pose a serious
threat to developers and end-users. Numerous research efforts have been devoted to …

Sok: Explainable machine learning for computer security applications

A Nadeem, D Vos, C Cao, L Pajola… - 2023 IEEE 8th …, 2023 - ieeexplore.ieee.org
Explainable Artificial Intelligence (XAI) aims to improve the transparency of machine
learning (ML) pipelines. We systematize the increasingly growing (but fragmented) …

A survey on data-driven software vulnerability assessment and prioritization

THM Le, H Chen, MA Babar - ACM Computing Surveys, 2022 - dl.acm.org
Software Vulnerabilities (SVs) are increasing in complexity and scale, posing great security
risks to many software systems. Given the limited resources in practice, SV assessment and …

What do you see? Evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors

YS Lin, WC Lee, ZB Celik - Proceedings of the 27th ACM SIGKDD …, 2021 - dl.acm.org
EXplainable AI (XAI) methods have been proposed to interpret how a deep neural network
predicts inputs through model saliency explanations that highlight the input parts deemed …