Deep learning for air pollutant concentration prediction: A review

B Zhang, Y Rong, R Yong, D Qin, M Li, G Zou… - Atmospheric …, 2022 - Elsevier
Air pollution has become one of the critical environmental problem in the 21st century and
has attracted worldwide attentions. To mitigate it, many researchers have investigated the …

Deep learning for spatio-temporal data mining: A survey

S Wang, J Cao, SY Philip - IEEE transactions on knowledge …, 2020 - ieeexplore.ieee.org
With the fast development of various positioning techniques such as Global Position System
(GPS), mobile devices and remote sensing, spatio-temporal data has become increasingly …

Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction

A Ali, Y Zhu, M Zakarya - Neural networks, 2022 - Elsevier
The prediction of crowd flows is an important urban computing issue whose purpose is to
predict the future number of incoming and outgoing people in regions. Measuring the …

A hybrid dipper throated optimization algorithm and particle swarm optimization (DTPSO) model for hepatocellular carcinoma (HCC) prediction

MY Shams, ESM El-Kenawy, A Ibrahim… - … Signal Processing and …, 2023 - Elsevier
Hepatocellular carcinoma (HCC) is a form of liver cancer that is widespread in Europe,
Africa, and Asia. The early identification of HCC is critical in improving the likelihood of …

[HTML][HTML] How machine learning informs ride-hailing services: A survey

Y Liu, R Jia, J Ye, X Qu - Communications in Transportation Research, 2022 - Elsevier
In recent years, online ride-hailing services have emerged as an important component of
urban transportation system, which not only provide significant ease for residents' travel …

Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks

A Ali, Y Zhu, M Zakarya - Information Sciences, 2021 - Elsevier
For intelligent transportation systems (ITS), predicting urban traffic crowd flows is of great
importance. However, it is challenging to represent various complex spatial relationships …

A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction

X Zhang, S Wen, L Yan, J Feng, Y Xia - The Computer Journal, 2024 - academic.oup.com
Accurate traffic flow prediction is valuable for satisfying citizens' travel needs and alleviating
urban traffic pressure. However, it is highly challenging due to the complexity of the urban …

[PDF][PDF] LSGCN: Long short-term traffic prediction with graph convolutional networks.

R Huang, C Huang, Y Liu, G Dai, W Kong - IJCAI, 2020 - researchgate.net
Traffic prediction is a classical spatial-temporal prediction problem with many real-world
applications such as intelligent route planning, dynamic traffic management, and smart …

Diffusion convolutional recurrent neural network: Data-driven traffic forecasting

Y Li, R Yu, C Shahabi, Y Liu - arXiv preprint arXiv:1707.01926, 2017 - arxiv.org
Spatiotemporal forecasting has various applications in neuroscience, climate and
transportation domain. Traffic forecasting is one canonical example of such learning task …

Adaptive graph convolutional recurrent network for traffic forecasting

L Bai, L Yao, C Li, X Wang… - Advances in neural …, 2020 - proceedings.neurips.cc
Modeling complex spatial and temporal correlations in the correlated time series data is
indispensable for understanding the traffic dynamics and predicting the future status of an …