Scholarly recommendation systems: a literature survey

Z Zhang, BG Patra, A Yaseen, J Zhu… - … and Information Systems, 2023 - Springer
A scholarly recommendation system is an important tool for identifying prior and related
resources such as literature, datasets, grants, and collaborators. A well-designed scholarly …

Matching returning donors to projects on philanthropic crowdfunding platforms

Y Song, Z Li, N Sahoo - Management Science, 2022 - pubsonline.informs.org
We propose an approach to match returning donors to fundraising campaigns on
philanthropic crowdfunding platforms. It is based on a structural econometric model of utility …

On the generalizability and predictability of recommender systems

D McElfresh, S Khandagale… - Advances in …, 2022 - proceedings.neurips.cc
While other areas of machine learning have seen more and more automation, designing a
high-performing recommender system still requires a high level of human effort …

Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback Datasets

L Wegmeth, T Vente, J Beel - Proceedings of the 18th ACM Conference …, 2024 - dl.acm.org
The recommender systems algorithm selection problem for ranking prediction on implicit
feedback datasets is under-explored. Traditional approaches in recommender systems …

Per-instance algorithm selection for recommender systems via instance clustering

A Collins, L Tierney, J Beel - arXiv preprint arXiv:2012.15151, 2020 - arxiv.org
Recommendation algorithms perform differently if the users, recommendation contexts,
applications, and user interfaces vary even slightly. It is similarly observed in other fields …

Analysis of Meta-Features in the Context of Adaptive Hybrid Recommendation Systems

D Varela, J Aguilar, J Monsalve-Pulido… - 2022 XVLIII Latin …, 2022 - ieeexplore.ieee.org
The difficulty in finding the most suitable recommendation algorithm for all requests is a
common challenge in the recommendation system context, regardless of the domain …

Siamese Meta-Learning and Algorithm Selection with'Algorithm-Performance Personas'[Proposal]

J Beel, B Tyrell, E Bergman, A Collins… - arXiv preprint arXiv …, 2020 - arxiv.org
Automated per-instance algorithm selection often outperforms single learners. Key to
algorithm selection via meta-learning is often the (meta) features, which sometimes though …

How useful is meta-recommendation? an empirical investigation

N Bouarour, I Benouaret… - 2021 IEEE International …, 2021 - ieeexplore.ieee.org
Despite the proliferation of recommendation algorithms, the question of which recommender
works best for which user-item instance remains widely open. In this paper, we develop a …

[PDF][PDF] Federated meta-learning: Democratizing algorithm selection across disciplines and software libraries

J Beel - Science (AICS), 2018 - researchgate.net
There is an ever-growing number of tools for automating the machine learning pipeline, both
commercial and open source. Auto-sklearn [11, 15], Auto Weka [14], ML-Plan [18], and H2O …

Algorithmes basés sur les données pour le comportement individuel et collectif des utilisateurs

N Bouarour - 2023 - theses.hal.science
Les données des utilisateurs deviennent de plus en plus disponibles dans plusieurs
domaines, allant des plateformes de commerce électronique aux réseaux sociaux. Elles …