Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets

T Tao - arXiv preprint arXiv:1211.2894, 2012 - arxiv.org
Let $ P:\F\times\F\to\F $ be a polynomial of bounded degree over a finite field $\F $ of large
characteristic. In this paper we establish the following dichotomy: either $ P $ is a moderate …

The sum-product phenomenon in arbitrary rings

T Tao - arXiv preprint arXiv:0806.2497, 2008 - arxiv.org
The\emph {sum-product phenomenon} predicts that a finite set $ A $ in a ring $ R $ should
have either a large sumset $ A+ A $ or large product set $ A\cdot A $ unless it is in some …

Cycles of Arbitrary Length in Distance Graphs on

A Iosevich, G Jardine, B McDonald - Proceedings of the Steklov Institute of …, 2021 - Springer
Abstract For E ⊂\mathbb F_q^ d, d ≥ 2, where\mathbb F_q is the finite field with q elements,
we consider the distance graph\mathcal G^ dist _t (E), t ≠ 0, where the vertices are the …

Long paths in the distance graph over large subsets of vector spaces over finite fields

M Bennett, J Chapman, D Covert, D Hart… - arXiv preprint arXiv …, 2014 - arxiv.org
Let $ E\subset {\Bbb F} _q^ d $, the $ d $-dimensional vector space over a finite field with $ q
$ elements. Construct a graph, called the distance graph of $ E $, by letting the vertices be …

Packing sets under finite groups via algebraic incidence structures

N Hegyvári, A Iosevich, LQ Hung, T Pham - arXiv preprint arXiv …, 2024 - arxiv.org
Let $ E $ be a subset in $\mathbb {F} _p^ 2$ and $ S $ be a subset in the special linear
group $ SL_2 (\mathbb {F} _p) $ or the $1 $-dimensional Heisenberg linear group $\mathbb …

[PDF][PDF] On an application of Guth-Katz theorem

A Iosevich, O Roche-Newton, M Rudnev - arXiv preprint arXiv:1103.1354, 2011 - Citeseer
We prove that for some universal c, a non-collinear set of N> 1 c points in the Euclidean
plane determines at least c N log N distinct areas of triangles with one vertex at the origin, as …

Incidence bounds for block designs

B Lund, S Saraf - SIAM Journal on Discrete Mathematics, 2016 - SIAM
We prove three theorems giving extremal bounds on the incidence structures determined by
subsets of the points and blocks of a balanced incomplete block design (BIBD). These …

Areas of triangles and Beck's theorem in planes over finite fields

A Iosevich, M Rudnev, Y Zhai - Combinatorica, 2015 - Springer
The first main result of this paper establishes that any sufficiently large subset of a plane
over the finite field F _q, namely any set E ⊆ F _q^ 2 of cardinality| E|> q, determines at least …

On volumes determined by subsets of Euclidean space

A Greenleaf, A Iosevich, M Mourgoglou - Forum Mathematicum, 2015 - degruyter.com
Abstract Given E⊂ ℝ d, define the volume set of E, 𝒱 (E)={det (x 1, x 2,..., xd): xj∈ E}. In ℝ3,
we prove that 𝒱 (E) has positive Lebesgue measure if either the Hausdorff dimension of E⊂ …

VC-Dimension of Hyperplanes over Finite Fields

R Ascoli, L Betti, J Cheigh, A Iosevich, R Jeong… - arXiv preprint arXiv …, 2023 - arxiv.org
Let $\mathbb {F} _q^ d $ be the $ d $-dimensional vector space over the finite field with $ q $
elements. For a subset $ E\subseteq\mathbb {F} _q^ d $ and a fixed nonzero $ t\in\mathbb …