Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L Xing, J Zou, JC Wu - Nature Biomedical Engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …

Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare

J Feng, RV Phillips, I Malenica, A Bishara… - NPJ digital …, 2022 - nature.com
Abstract Machine learning (ML) and artificial intelligence (AI) algorithms have the potential to
derive insights from clinical data and improve patient outcomes. However, these highly …

Randomized clinical trials of machine learning interventions in health care: a systematic review

D Plana, DL Shung, AA Grimshaw, A Saraf… - JAMA network …, 2022 - jamanetwork.com
Importance Despite the potential of machine learning to improve multiple aspects of patient
care, barriers to clinical adoption remain. Randomized clinical trials (RCTs) are often a …

A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies

A Thelen, X Zhang, O Fink, Y Lu, S Ghosh… - Structural and …, 2022 - Springer
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health …

Ethical machine learning in healthcare

IY Chen, E Pierson, S Rose, S Joshi… - Annual review of …, 2021 - annualreviews.org
The use of machine learning (ML) in healthcare raises numerous ethical concerns,
especially as models can amplify existing health inequities. Here, we outline ethical …

There is no such thing as a validated prediction model

B Van Calster, EW Steyerberg, L Wynants… - BMC medicine, 2023 - Springer
Background Clinical prediction models should be validated before implementation in clinical
practice. But is favorable performance at internal validation or one external validation …

Calibration: the Achilles heel of predictive analytics

B Van Calster, DJ McLernon, M Van Smeden… - BMC medicine, 2019 - Springer
Background The assessment of calibration performance of risk prediction models based on
regression or more flexible machine learning algorithms receives little attention. Main text …

Wilds: A benchmark of in-the-wild distribution shifts

PW Koh, S Sagawa, H Marklund… - International …, 2021 - proceedings.mlr.press
Distribution shifts—where the training distribution differs from the test distribution—can
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …

The myth of generalisability in clinical research and machine learning in health care

J Futoma, M Simons, T Panch, F Doshi-Velez… - The Lancet Digital …, 2020 - thelancet.com
An emphasis on overly broad notions of generalisability as it pertains to applications of
machine learning in health care can overlook situations in which machine learning might …

A systematic review on supervised and unsupervised machine learning algorithms for data science

M Alloghani, D Al-Jumeily, J Mustafina… - … learning for data …, 2020 - Springer
Abstract Machine learning is as growing as fast as concepts such as Big data and the field of
data science in general. The purpose of the systematic review was to analyze scholarly …