A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data

L Lu, X Meng, S Cai, Z Mao, S Goswami… - Computer Methods in …, 2022 - Elsevier
Neural operators can learn nonlinear mappings between function spaces and offer a new
simulation paradigm for real-time prediction of complex dynamics for realistic diverse …

Learning the solution operator of parametric partial differential equations with physics-informed DeepONets

S Wang, H Wang, P Perdikaris - Science advances, 2021 - science.org
Partial differential equations (PDEs) play a central role in the mathematical analysis and
modeling of complex dynamic processes across all corners of science and engineering …

Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations

N McGreivy, A Hakim - Nature Machine Intelligence, 2024 - nature.com
One of the most promising applications of machine learning in computational physics is to
accelerate the solution of partial differential equations (PDEs). The key objective of machine …

Physics-informed machine learning: A survey on problems, methods and applications

Z Hao, S Liu, Y Zhang, C Ying, Y Feng, H Su… - arXiv preprint arXiv …, 2022 - arxiv.org
Recent advances of data-driven machine learning have revolutionized fields like computer
vision, reinforcement learning, and many scientific and engineering domains. In many real …

Reliable extrapolation of deep neural operators informed by physics or sparse observations

M Zhu, H Zhang, A Jiao, GE Karniadakis… - Computer Methods in …, 2023 - Elsevier
Deep neural operators can learn nonlinear mappings between infinite-dimensional function
spaces via deep neural networks. As promising surrogate solvers of partial differential …

Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport

L Lu, R Pestourie, SG Johnson, G Romano - Physical Review Research, 2022 - APS
Deep neural operators can learn operators mapping between infinite-dimensional function
spaces via deep neural networks and have become an emerging paradigm of scientific …

Learning operators with coupled attention

G Kissas, JH Seidman, LF Guilhoto… - Journal of Machine …, 2022 - jmlr.org
Supervised operator learning is an emerging machine learning paradigm with applications
to modeling the evolution of spatio-temporal dynamical systems and approximating general …

Deep learning in computational mechanics: a review

L Herrmann, S Kollmannsberger - Computational Mechanics, 2024 - Springer
The rapid growth of deep learning research, including within the field of computational
mechanics, has resulted in an extensive and diverse body of literature. To help researchers …

Novel DeepONet architecture to predict stresses in elastoplastic structures with variable complex geometries and loads

J He, S Koric, S Kushwaha, J Park, D Abueidda… - Computer Methods in …, 2023 - Elsevier
A novel deep operator network (DeepONet) with a residual U-Net (ResUNet) as the trunk
network is devised to predict full-field highly nonlinear elastic–plastic stress response for …

Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems

M Yin, E Zhang, Y Yu, GE Karniadakis - Computer methods in applied …, 2022 - Elsevier
Multiscale modeling is an effective approach for investigating multiphysics systems with
largely disparate size features, where models with different resolutions or heterogeneous …