Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

[HTML][HTML] Digital pathology and artificial intelligence in translational medicine and clinical practice

V Baxi, R Edwards, M Montalto, S Saha - Modern Pathology, 2022 - Elsevier
Traditional pathology approaches have played an integral role in the delivery of diagnosis,
semi-quantitative or qualitative assessment of protein expression, and classification of …

AI applications to medical images: From machine learning to deep learning

I Castiglioni, L Rundo, M Codari, G Di Leo, C Salvatore… - Physica medica, 2021 - Elsevier
Purpose Artificial intelligence (AI) models are playing an increasing role in biomedical
research and healthcare services. This review focuses on challenges points to be clarified …

[HTML][HTML] Artificial intelligence and computational pathology

M Cui, DY Zhang - Laboratory Investigation, 2021 - Elsevier
Data processing and learning has become a spearhead for the advancement of medicine,
with pathology and laboratory medicine has no exception. The incorporation of scientific …

[HTML][HTML] On the analyses of medical images using traditional machine learning techniques and convolutional neural networks

S Iqbal, A N. Qureshi, J Li, T Mahmood - Archives of Computational …, 2023 - Springer
Convolutional neural network (CNN) has shown dissuasive accomplishment on different
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …

A graph-transformer for whole slide image classification

Y Zheng, RH Gindra, EJ Green, EJ Burks… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning is a powerful tool for whole slide image (WSI) analysis. Typically, when
performing supervised deep learning, a WSI is divided into small patches, trained and the …

[HTML][HTML] Digital pathology: advantages, limitations and emerging perspectives

SW Jahn, M Plass, F Moinfar - Journal of clinical medicine, 2020 - mdpi.com
Digital pathology is on the verge of becoming a mainstream option for routine diagnostics.
Faster whole slide image scanning has paved the way for this development, but …

Artificial intelligence for digital and computational pathology

AH Song, G Jaume, DFK Williamson, MY Lu… - Nature Reviews …, 2023 - nature.com
Advances in digitizing tissue slides and the fast-paced progress in artificial intelligence,
including deep learning, have boosted the field of computational pathology. This field holds …

[HTML][HTML] Digital pathology and computational image analysis in nephropathology

L Barisoni, KJ Lafata, SM Hewitt… - Nature Reviews …, 2020 - nature.com
The emergence of digital pathology—an image-based environment for the acquisition,
management and interpretation of pathology information supported by computational …

A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer

M Amgad, JM Hodge, MAT Elsebaie, C Bodelon… - Nature Medicine, 2024 - nature.com
Breast cancer is a heterogeneous disease with variable survival outcomes. Pathologists
grade the microscopic appearance of breast tissue using the Nottingham criteria, which are …