On factorization and vector bundles of conformal blocks from vertex algebras

C Damiolini, A Gibney, N Tarasca - arXiv preprint arXiv:1909.04683, 2019 - arxiv.org
Representations of vertex operator algebras define sheaves of coinvariants and conformal
blocks on moduli of stable pointed curves. Assuming certain finiteness and semisimplicity …

Conformal blocks from vertex algebras and their connections on ℳg, n

C Damiolini, A Gibney, N Tarasca - Geometry & Topology, 2021 - msp.org
We show that coinvariants of modules over vertex operator algebras give rise to
quasicoherent sheaves on moduli of stable pointed curves. These generalize Verlinde …

NONVANISHING OF CONFORMAL BLOCKS DIVISORS ON

P Belkale, A Gibney, S Mukhopadhyay - Transformation Groups, 2016 - Springer
We introduce and study the problem of finding necessary and sufficient conditions under
which a conformal blocks divisor on M¯ 0, n M _ 0, n is nonzero, solving the problem …

Conformal blocks in genus zero and the KZ connection

P Belkale, N Fakhruddin - Perspectives on Four Decades of Algebraic …, 2024 - Springer
Conformal Blocks in Genus Zero and the KZ Connection | SpringerLink Skip to main content
Advertisement Springer Nature Link Account Menu Find a journal Publish with us Track your …

Basepoint Free Cycles on 0n from Gromov–Witten Theory

P Belkale, A Gibney - International Mathematics Research …, 2021 - academic.oup.com
Basepoint free cycles on the moduli space of stable-pointed rational curves, defined using
Gromov–Witten invariants of smooth projective homogeneous spaces are introduced and …

Factorization of point configurations, cyclic covers, and conformal blocks

M Bolognesi, N Giansiracusa - Journal of the European Mathematical …, 2015 - ems.press
We describe a relation between the invariants of n ordered points in projective d-space and
of points contained in a union of two linear subspaces. This yields an attaching map for GIT …

On an Equivalence of Divisors on from Gromov-Witten Theory and Conformal Blocks

L Chen, A Gibney, L Heller, E Kalashnikov… - Transformation …, 2024 - Springer
We consider a conjecture that identifies two types of base point free divisors on M¯ 0, n. The
first arises from Gromov-Witten theory of a Grassmannian. The second comes from first …

[PDF][PDF] Semiampleness criteria for divisors on M0, n

M Fedorchuk - arXiv preprint arXiv:1407.7839, 2014 - Citeseer
We develop new characteristic-independent combinatorial criteria for semiampleness of
divisors on M0, n. As an application, we associate to a cyclic rational quadratic form …

Mori's Program for with Symmetric Divisors

HB Moon - Canadian Journal of Mathematics, 2017 - cambridge.org
We complete Mori's program with symmetric divisors for the moduli space of stable seven-
pointed rational curves. We describe all birational models in terms of explicit blow-ups and …

On S n -invariant conformal blocks vector bundles of rank one on

A Kazanova - manuscripta mathematica, 2016 - Springer
For any simple Lie algebra, a positive integer, and n-tuple of compatible weights, the
conformal blocks bundle is a globally generated vector bundle on the moduli space of …