InGram: Inductive knowledge graph embedding via relation graphs

J Lee, C Chung, JJ Whang - International Conference on …, 2023 - proceedings.mlr.press
Inductive knowledge graph completion has been considered as the task of predicting
missing triplets between new entities that are not observed during training. While most …

Generalizing to unseen elements: A survey on knowledge extrapolation for knowledge graphs

M Chen, W Zhang, Y Geng, Z Xu, JZ Pan… - arXiv preprint arXiv …, 2023 - arxiv.org
Knowledge graphs (KGs) have become valuable knowledge resources in various
applications, and knowledge graph embedding (KGE) methods have garnered increasing …

Exploring multi-granularity contextual semantics for fully inductive knowledge graph completion

J Wang, W Li, AM Luvembe, X Yu, X Zhang… - Expert Systems with …, 2025 - Elsevier
Fully inductive knowledge graph completion (KGC) aims to predict triplets involving both
unseen entities and relations. Recent several approaches transform paths between entities …

ConeE: Global and local context-enhanced embedding for inductive knowledge graph completion

J Wang, W Li, F Liu, Z Wang, AM Luvembe, Q Jin… - Expert Systems with …, 2024 - Elsevier
Abstract Knowledge graph completion (KGC) aims at completing missing information in
knowledge graphs (KGs). Most previous works work well in the transductive setting, but are …

A comparative analysis of computational drug repurposing approaches: proposing a novel tensor-matrix-tensor factorization method

A Zabihian, J Asghari, M Hooshmand, S Gharaghani - Molecular Diversity, 2024 - Springer
Efficient drug discovery relies on drug repurposing, an important and open research field.
This work presents a novel factorization method and a practical comparison of different …

A knowledge graph embedding model based on multi-level analogical reasoning

X Zhao, M Yang, H Yang - Cluster Computing, 2024 - Springer
The existing knowledge graph embedding (KGE) models based on graph neural networks
(GNNs) typically aggregate unreliable neighboring node information, leading to a decrease …

[PDF][PDF] Prévision de la demande d'électricité par régression linéaire et réseaux de neurones artificiels: application au réseau de la ville de Baie-Comeau

Y Akrour - 2022 - depot-e.uqtr.ca
Résumé En raison de la croissance démographique et du développement économique, le
secteur d'énergie et des réseaux électriques au nord du Canada est dans l'obligation de …