Knowledge graphs (KGs) have become valuable knowledge resources in various applications, and knowledge graph embedding (KGE) methods have garnered increasing …
J Wang, W Li, AM Luvembe, X Yu, X Zhang… - Expert Systems with …, 2025 - Elsevier
Fully inductive knowledge graph completion (KGC) aims to predict triplets involving both unseen entities and relations. Recent several approaches transform paths between entities …
J Wang, W Li, F Liu, Z Wang, AM Luvembe, Q Jin… - Expert Systems with …, 2024 - Elsevier
Abstract Knowledge graph completion (KGC) aims at completing missing information in knowledge graphs (KGs). Most previous works work well in the transductive setting, but are …
Efficient drug discovery relies on drug repurposing, an important and open research field. This work presents a novel factorization method and a practical comparison of different …
X Zhao, M Yang, H Yang - Cluster Computing, 2024 - Springer
The existing knowledge graph embedding (KGE) models based on graph neural networks (GNNs) typically aggregate unreliable neighboring node information, leading to a decrease …
Résumé En raison de la croissance démographique et du développement économique, le secteur d'énergie et des réseaux électriques au nord du Canada est dans l'obligation de …