[HTML][HTML] Applications of reinforcement learning in energy systems

ATD Perera, P Kamalaruban - Renewable and Sustainable Energy …, 2021 - Elsevier
Energy systems undergo major transitions to facilitate the large-scale penetration of
renewable energy technologies and improve efficiencies, leading to the integration of many …

[HTML][HTML] Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review

I Antonopoulos, V Robu, B Couraud, D Kirli… - … and Sustainable Energy …, 2020 - Elsevier
Recent years have seen an increasing interest in Demand Response (DR) as a means to
provide flexibility, and hence improve the reliability of energy systems in a cost-effective way …

Deep reinforcement learning for Internet of Things: A comprehensive survey

W Chen, X Qiu, T Cai, HN Dai… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The incumbent Internet of Things suffers from poor scalability and elasticity exhibiting in
communication, computing, caching and control (4Cs) problems. The recent advances in …

Deep reinforcement learning for power system applications: An overview

Z Zhang, D Zhang, RC Qiu - CSEE Journal of Power and …, 2019 - ieeexplore.ieee.org
Due to increasing complexity, uncertainty and data dimensions in power systems,
conventional methods often meet bottlenecks when attempting to solve decision and control …

[HTML][HTML] Artificial intelligence techniques for enabling Big Data services in distribution networks: A review

S Barja-Martinez, M Aragüés-Peñalba… - … and Sustainable Energy …, 2021 - Elsevier
Artificial intelligence techniques lead to data-driven energy services in distribution power
systems by extracting value from the data generated by the deployed metering and sensing …

A multi-agent reinforcement learning-based data-driven method for home energy management

X Xu, Y Jia, Y Xu, Z Xu, S Chai… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
This paper proposes a novel framework for home energy management (HEM) based on
reinforcement learning in achieving efficient home-based demand response (DR). The …

Machine learning driven smart electric power systems: Current trends and new perspectives

MS Ibrahim, W Dong, Q Yang - Applied Energy, 2020 - Elsevier
The current power systems are undergoing a rapid transition towards their more active,
flexible, and intelligent counterpart smart grid, which brings about tremendous challenges in …

Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms

S Tufail, H Riggs, M Tariq, AI Sarwat - Electronics, 2023 - mdpi.com
In the current world of the Internet of Things, cyberspace, mobile devices, businesses, social
media platforms, healthcare systems, etc., there is a lot of data online today. Machine …

[HTML][HTML] Market mechanisms for local electricity markets: A review of models, solution concepts and algorithmic techniques

G Tsaousoglou, JS Giraldo, NG Paterakis - Renewable and Sustainable …, 2022 - Elsevier
The rapidly increasing penetration of distributed energy resources (DERs) calls for a
hierarchical framework where aggregating entities handle the energy management …

Fundamentals and business model for resource aggregator of demand response in electricity markets

X Lu, K Li, H Xu, F Wang, Z Zhou, Y Zhang - Energy, 2020 - Elsevier
Demand response (DR) is an effective means to help maintain the balance between power
supply and demand, promote energy conservation and emission reduction. Nevertheless …