Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

The central role of density functional theory in the AI age

B Huang, GF von Rudorff, OA von Lilienfeld - Science, 2023 - science.org
Density functional theory (DFT) plays a pivotal role in chemical and materials science
because of its relatively high predictive power, applicability, versatility, and computational …

Emerging materials intelligence ecosystems propelled by machine learning

R Batra, L Song, R Ramprasad - Nature Reviews Materials, 2021 - nature.com
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …

Big-data science in porous materials: materials genomics and machine learning

KM Jablonka, D Ongari, SM Moosavi, B Smit - Chemical reviews, 2020 - ACS Publications
By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …

Quantum chemistry in the age of machine learning

PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …

Polymer informatics: Current status and critical next steps

L Chen, G Pilania, R Batra, TD Huan, C Kim… - Materials Science and …, 2021 - Elsevier
Artificial intelligence (AI) based approaches are beginning to impact several domains of
human life, science and technology. Polymer informatics is one such domain where AI and …

Exploring chemical compound space with quantum-based machine learning

OA von Lilienfeld, KR Müller… - Nature Reviews Chemistry, 2020 - nature.com
Rational design of compounds with specific properties requires understanding and fast
evaluation of molecular properties throughout chemical compound space—the huge set of …

[HTML][HTML] Perspective on integrating machine learning into computational chemistry and materials science

J Westermayr, M Gastegger, KT Schütt… - The Journal of Chemical …, 2021 - pubs.aip.org
Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly …

Ab initio machine learning in chemical compound space

B Huang, OA Von Lilienfeld - Chemical reviews, 2021 - ACS Publications
Chemical compound space (CCS), the set of all theoretically conceivable combinations of
chemical elements and (meta-) stable geometries that make up matter, is colossal. The first …

[PDF][PDF] Applications of quantum computing in telecom e-commerce: Analysis of qkd, qaoa, and qml for data encryption, speed optimization, and ai-driven customer …

R Khurana - Quarterly Journal of Emerging Technologies and …, 2022 - researchgate.net
Quantum computing methods take advantage of the principles of superposition and
entanglement to facilitate parallel computing that is beyond the reach of classical systems …