Science in the age of large language models

A Birhane, A Kasirzadeh, D Leslie… - Nature Reviews Physics, 2023 - nature.com
Rapid advances in the capabilities of large language models and the broad accessibility of
tools powered by this technology have led to both excitement and concern regarding their …

Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Graph neural networks for materials science and chemistry

P Reiser, M Neubert, A Eberhard, L Torresi… - Communications …, 2022 - nature.com
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …

Artificial intelligence and illusions of understanding in scientific research

L Messeri, MJ Crockett - Nature, 2024 - nature.com
Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might
improve research. Why are AI tools so attractive and what are the risks of implementing them …

Enhancing student engagement: Harnessing “AIED”'s power in hybrid education—A review analysis

A Almusaed, A Almssad, I Yitmen, RZ Homod - Education Sciences, 2023 - mdpi.com
Hybrid learning is a complex combination of face-to-face and online learning. This model
combines the use of multimedia materials with traditional classroom work. Virtual hybrid …

The central role of density functional theory in the AI age

B Huang, GF von Rudorff, OA von Lilienfeld - Science, 2023 - science.org
Density functional theory (DFT) plays a pivotal role in chemical and materials science
because of its relatively high predictive power, applicability, versatility, and computational …

14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon

KM Jablonka, Q Ai, A Al-Feghali, S Badhwar… - Digital …, 2023 - pubs.rsc.org
Large-language models (LLMs) such as GPT-4 caught the interest of many scientists.
Recent studies suggested that these models could be useful in chemistry and materials …

[HTML][HTML] Empowering biomedical discovery with AI agents

S Gao, A Fang, Y Huang, V Giunchiglia, A Noori… - Cell, 2024 - cell.com
We envision" AI scientists" as systems capable of skeptical learning and reasoning that
empower biomedical research through collaborative agents that integrate AI models and …

Artificial intelligence and machine learning for quantum technologies

M Krenn, J Landgraf, T Foesel, F Marquardt - Physical Review A, 2023 - APS
In recent years the dramatic progress in machine learning has begun to impact many areas
of science and technology significantly. In the present perspective article, we explore how …

Exploiting redundancy in large materials datasets for efficient machine learning with less data

K Li, D Persaud, K Choudhary, B DeCost… - Nature …, 2023 - nature.com
Extensive efforts to gather materials data have largely overlooked potential data
redundancy. In this study, we present evidence of a significant degree of redundancy across …