Scanning technologies to building information modelling: A review

R Rashdi, J Martínez-Sánchez, P Arias, Z Qiu - Infrastructures, 2022 - mdpi.com
Building information modelling (BIM) is evolving significantly in the architecture, engineering
and construction industries. BIM involves various remote-sensing tools, procedures and …

Enabling resource-efficient aiot system with cross-level optimization: A survey

S Liu, B Guo, C Fang, Z Wang, S Luo… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
The emerging field of artificial intelligence of things (AIoT, AI+ IoT) is driven by the
widespread use of intelligent infrastructures and the impressive success of deep learning …

Point transformer v2: Grouped vector attention and partition-based pooling

X Wu, Y Lao, L Jiang, X Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
As a pioneering work exploring transformer architecture for 3D point cloud understanding,
Point Transformer achieves impressive results on multiple highly competitive benchmarks. In …

Rethinking range view representation for lidar segmentation

L Kong, Y Liu, R Chen, Y Ma, X Zhu… - Proceedings of the …, 2023 - openaccess.thecvf.com
LiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point-
or voxel-based methods as they often yield better performance than the traditional range …

Stratified transformer for 3d point cloud segmentation

X Lai, J Liu, L Jiang, L Wang, H Zhao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract 3D point cloud segmentation has made tremendous progress in recent years. Most
current methods focus on aggregating local features, but fail to directly model long-range …

Point Transformer V3: Simpler Faster Stronger

X Wu, L Jiang, PS Wang, Z Liu, X Liu… - Proceedings of the …, 2024 - openaccess.thecvf.com
This paper is not motivated to seek innovation within the attention mechanism. Instead it
focuses on overcoming the existing trade-offs between accuracy and efficiency within the …

Point-to-voxel knowledge distillation for lidar semantic segmentation

Y Hou, X Zhu, Y Ma, CC Loy… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
This article addresses the problem of distilling knowledge from a large teacher model to a
slim student network for LiDAR semantic segmentation. Directly employing previous …

Cylindrical and asymmetrical 3d convolution networks for lidar segmentation

X Zhu, H Zhou, T Wang, F Hong, Y Ma… - Proceedings of the …, 2021 - openaccess.thecvf.com
State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the
point clouds to 2D space and then process them via 2D convolution. Although this …

Towards large-scale 3d representation learning with multi-dataset point prompt training

X Wu, Z Tian, X Wen, B Peng, X Liu… - Proceedings of the …, 2024 - openaccess.thecvf.com
The rapid advancement of deep learning models is often attributed to their ability to leverage
massive training data. In contrast such privilege has not yet fully benefited 3D deep learning …

Contrastive boundary learning for point cloud segmentation

L Tang, Y Zhan, Z Chen, B Yu… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Point cloud segmentation is fundamental in understanding 3D environments. However,
current 3D point cloud segmentation methods usually perform poorly on scene boundaries …