J Anschütz, B Heuer, ACL Bras - arXiv preprint arXiv:2211.08470, 2022 - arxiv.org
We describe the category of continuous semilinear representations and their cohomology for the Galois group of a $ p $-adic field $ K $ with coefficients in a completed algebraic closure …
J Anschütz, B Heuer, ACL Bras - arXiv preprint arXiv:2312.07554, 2023 - arxiv.org
For any rigid space over a perfectoid extension of $\mathbb Q_p $ that admits a liftable smooth formal model, we construct an isomorphism between the moduli stacks of Hitchin …
Y Min, Y Wang - arXiv preprint arXiv:2112.10140, 2021 - arxiv.org
We prove that a Hodge--Tate prismatic crystal on (O_K) _ {\Prism} is uniquely determined by a topologically" nilpotent" operator. Using this operator, we construct a C_p-representation …
J Anschütz, B Heuer, ACL Bras - arXiv preprint arXiv:2302.12747, 2023 - arxiv.org
Let $ X $ be a quasi-compact quasi-separated $ p $-adic formal scheme that is smooth either over a perfectoid $\mathbb {Z} _p $-algebra or over some ring of integers of a $ p …
H Gao, Y Min, Y Wang - arXiv preprint arXiv:2206.10276, 2022 - arxiv.org
Let $\mathcal {O} _K $ be a mixed characteristic complete discrete valuation ring with perfect residue field. We classify de Rham crystals over the (log-) prismatic site of $\mathcal {O} _K …
Z Liu - arXiv preprint arXiv:2409.02051, 2024 - arxiv.org
Let $ X=\mathrm {Spf}(\mathcal {O} _K) $. We classify perfect complexes of $ n $-truncated prismatic crystals on the prismatic site of $ X $ when $ n\leq 1+\frac {p-1}{e} $ by studying …
Y Min, Y Wang - arXiv preprint arXiv:2205.08895, 2022 - arxiv.org
Let $\calO_K $ be a complete discrete valuation ring of mixed characteristic $(0, p) $ with a perfect residue field. In this paper, for a semi-stable $ p $-adic formal scheme $\frakX $ over …
H Gao, Y Min, Y Wang - arXiv preprint arXiv:2411.18780, 2024 - arxiv.org
We systematically study relative and absolute ${\Delta} _ {\mathrm {dR}}^+ $-crystals on the (log-) prismatic site of a smooth (resp.~ semi-stable) formal scheme. Using explicit …
Z Liu - Mathematische Zeitschrift, 2023 - Springer
We study de Rham prismatic crystals on. We show that a de Rham crystal is controlled by a sequence of matrices {A m, 1} m≥ 0 with A 0, 1 “nilpotent”. Using this, we prove that the …