Remarks on the symplectic invariance of Aubry–Mather sets

M Mazzucchelli, A Sorrentino - Comptes Rendus. Mathématique, 2016 - numdam.org
On discute et clarifie quelques questions liées à la généralisation du théorème de Bernard
sur l'invariance symplectique des ensembles d'Aubry, de Mather et de Mañé aux cas de …

Periodic magnetic geodesics on Heisenberg manifolds

J Epstein, R Gornet, MB Mast - Annals of Global Analysis and Geometry, 2021 - Springer
We study the dynamics of magnetic flows on Heisenberg groups, investigating the extent to
which properties of the underlying Riemannian geometry are reflected in the magnetic flow …

Minimal measures for Euler–Lagrange flows on finite covering spaces

F Wang, Z Xia - Nonlinearity, 2016 - iopscience.iop.org
In this paper we study the minimal measures for positive definite Lagrangian systems on
compact manifolds. We are particularly interested in manifolds with more complicated …

[PDF][PDF] On John Mather's seminal contributions in Hamiltonian dynamics

A Sorrentino - Methods and Applications of Analysis, 2019 - mat.uniroma2.it
ON JOHN MATHER’S SEMINAL CONTRIBUTIONS IN HAMILTONIAN DYNAMICS John N.
Mather was undoubtedly one of the most influential math Page 1 METHODS AND …

On the Homogenization of the Hamilton-Jacobi Equation

A Sorrentino - arXiv preprint arXiv:1904.01359, 2019 - arxiv.org
In this article we describe how the celebrated result by Lions, Papanicolau and Varadhan on
the Homogenization of Hamilton-Jacobi equation can be extended beyond the Euclidean …

[PDF][PDF] HOMOGENIZATION OF EQUIVARIANT HAMILTON-JACOBI EQUATIONS

A SORRENTINO - 2015 - researchgate.net
Since the celebrated work by Lions, Papanicolaou and Varadhan in 1980's, there has been
a considerable attention to the homogenization problem for Hamilton-Jacobi equation …