Existential first-order definitions and quadratic forms

N Daans - 2022 - repository.uantwerpen.be
Answering a famous question of David Hilbert, it was shown by Davis, Putnam, Robinson
and Matiyasevich in 1970 that there can never be an algorithm which can decide whether or …

Existential rank and essential dimension of diophantine sets

N Daans, P Dittmann, A Fehm - arXiv preprint arXiv:2102.06941, 2021 - arxiv.org
arXiv:2102.06941v3 [math.NT] 18 Oct 2021 Page 1 arXiv:2102.06941v3 [math.NT] 18 Oct 2021
EXISTENTIAL RANK AND ESSENTIAL DIMENSION OF DIOPHANTINE SETS NICOLAS …

Éz fields

E Walsberg, J Ye - Journal of Algebra, 2023 - Elsevier
Let K be a field. The étale open topology on the K-points V (K) of a K-variety V was
introduced in [23]. The étale open topology is non-discrete if and only if K is large. If K is …

The étale open topology over the fraction field of a Henselian local domain

W Johnson, E Walsberg, J Ye - Mathematische Nachrichten, 2023 - Wiley Online Library
Suppose that R is a local domain with fraction field K. If R is Henselian, then the R‐adic
topology over K refines the étale open topology. If R is regular, then the étale open topology …

Characterizing diophantine henselian valuation rings and valuation ideals

S Anscombe, A Fehm - Proceedings of the London …, 2017 - Wiley Online Library
We give a characterization, in terms of the residue field, of those henselian valuation rings
and those henselian valuation ideals that are diophantine. This characterization gives a …

Nondefinability of rings of integers in most algebraic fields

P Dittmann, A Fehm - Notre Dame Journal of Formal Logic, 2021 - projecteuclid.org
Nondefinability of Rings of Integers in Most Algebraic Fields Page 1 Notre Dame Journal of
Formal Logic Volume 62, Number 3, 2021 Nondefinability of Rings of Integers in Most Algebraic …

A note on Diophantine subsets of large fields

A Kwon - arXiv preprint arXiv:2411.03212, 2024 - arxiv.org
Large fields (also called ample, anti-mordellic) generalize many fields of classical interest,
such as algebraically closed fields, real-closed fields, and $ p $-adic fields. In this note we …

Non-Diophantine sets in rings of functions

N Garcia-Fritz, H Pasten, T Pheidas - arXiv preprint arXiv:2210.10556, 2022 - arxiv.org
Except for a limited number of cases, a complete classification of the Diophantine sets of
polynomial rings and fields of rational functions seems out of reach at present. We contribute …