AlphaFold2 and its applications in the fields of biology and medicine

Z Yang, X Zeng, Y Zhao, R Chen - Signal Transduction and Targeted …, 2023 - nature.com
Abstract AlphaFold2 (AF2) is an artificial intelligence (AI) system developed by DeepMind
that can predict three-dimensional (3D) structures of proteins from amino acid sequences …

Structure-based protein design with deep learning

S Ovchinnikov, PS Huang - Current opinion in chemical biology, 2021 - Elsevier
Since the first revelation of proteins functioning as macromolecular machines through their
three dimensional structures, researchers have been intrigued by the marvelous ways the …

Large language models generate functional protein sequences across diverse families

A Madani, B Krause, ER Greene, S Subramanian… - Nature …, 2023 - nature.com
Deep-learning language models have shown promise in various biotechnological
applications, including protein design and engineering. Here we describe ProGen, a …

De novo design of luciferases using deep learning

AHW Yeh, C Norn, Y Kipnis, D Tischer, SJ Pellock… - Nature, 2023 - nature.com
De novo enzyme design has sought to introduce active sites and substrate-binding pockets
that are predicted to catalyse a reaction of interest into geometrically compatible native …

Learning inverse folding from millions of predicted structures

C Hsu, R Verkuil, J Liu, Z Lin, B Hie… - International …, 2022 - proceedings.mlr.press
We consider the problem of predicting a protein sequence from its backbone atom
coordinates. Machine learning approaches to this problem to date have been limited by the …

Scaffolding protein functional sites using deep learning

J Wang, S Lisanza, D Juergens, D Tischer, JL Watson… - Science, 2022 - science.org
The binding and catalytic functions of proteins are generally mediated by a small number of
functional residues held in place by the overall protein structure. Here, we describe deep …

Mega-scale experimental analysis of protein folding stability in biology and design

K Tsuboyama, J Dauparas, J Chen, E Laine… - Nature, 2023 - nature.com
Advances in DNA sequencing and machine learning are providing insights into protein
sequences and structures on an enormous scale. However, the energetics driving folding …

Hallucinating symmetric protein assemblies

BIM Wicky, LF Milles, A Courbet, RJ Ragotte… - Science, 2022 - science.org
Deep learning generative approaches provide an opportunity to broadly explore protein
structure space beyond the sequences and structures of natural proteins. Here, we use deep …

Improving de novo protein binder design with deep learning

NR Bennett, B Coventry, I Goreshnik, B Huang… - Nature …, 2023 - nature.com
Recently it has become possible to de novo design high affinity protein binding proteins from
target structural information alone. There is, however, considerable room for improvement as …

De novo protein design by deep network hallucination

I Anishchenko, SJ Pellock, TM Chidyausiku… - Nature, 2021 - nature.com
There has been considerable recent progress in protein structure prediction using deep
neural networks to predict inter-residue distances from amino acid sequences,–. Here we …