Convolutional neural networks as a model of the visual system: Past, present, and future

GW Lindsay - Journal of cognitive neuroscience, 2021 - direct.mit.edu
Convolutional neural networks (CNNs) were inspired by early findings in the study of
biological vision. They have since become successful tools in computer vision and state-of …

Deep learning in spiking neural networks

A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …

Deep problems with neural network models of human vision

JS Bowers, G Malhotra, M Dujmović… - Behavioral and Brain …, 2023 - cambridge.org
Deep neural networks (DNNs) have had extraordinary successes in classifying
photographic images of objects and are often described as the best models of biological …

A framework for quantitative analysis and differentiated marketing of tourism destination image based on visual content of photos

X Xiao, C Fang, H Lin, J Chen - Tourism Management, 2022 - Elsevier
Photos shared by tourists are being generated at an unprecedented speed, creating new
opportunities to study tourism destination images. Nevertheless, little research has focused …

Generalisation in humans and deep neural networks

R Geirhos, CRM Temme, J Rauber… - Advances in neural …, 2018 - proceedings.neurips.cc
We compare the robustness of humans and current convolutional deep neural networks
(DNNs) on object recognition under twelve different types of image degradations. First, using …

STDP-based spiking deep convolutional neural networks for object recognition

SR Kheradpisheh, M Ganjtabesh, SJ Thorpe… - Neural Networks, 2018 - Elsevier
Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in
spiking neural networks (SNN) to extract visual features of low or intermediate complexity in …

Deep learning: the good, the bad, and the ugly

T Serre - Annual review of vision science, 2019 - annualreviews.org
Artificial vision has often been described as one of the key remaining challenges to be
solved before machines can act intelligently. Recent developments in a branch of machine …

Comparing deep neural networks against humans: object recognition when the signal gets weaker

R Geirhos, DHJ Janssen, HH Schütt, J Rauber… - arXiv preprint arXiv …, 2017 - arxiv.org
Human visual object recognition is typically rapid and seemingly effortless, as well as largely
independent of viewpoint and object orientation. Until very recently, animate visual systems …

Separability and geometry of object manifolds in deep neural networks

U Cohen, SY Chung, DD Lee, H Sompolinsky - Nature communications, 2020 - nature.com
Stimuli are represented in the brain by the collective population responses of sensory
neurons, and an object presented under varying conditions gives rise to a collection of …

Deep learning in electron microscopy

JM Ede - Machine Learning: Science and Technology, 2021 - iopscience.iop.org
Deep learning is transforming most areas of science and technology, including electron
microscopy. This review paper offers a practical perspective aimed at developers with …