A review of generalized zero-shot learning methods

F Pourpanah, M Abdar, Y Luo, X Zhou… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples
under the condition that some output classes are unknown during supervised learning. To …

Boosting zero-shot learning via contrastive optimization of attribute representations

Y Du, M Shi, F Wei, G Li - IEEE Transactions on Neural …, 2023 - ieeexplore.ieee.org
Zero-shot learning (ZSL) aims to recognize classes that do not have samples in the training
set. One representative solution is to directly learn an embedding function associating visual …

Text2Model: Text-based Model Induction for Zero-shot Image Classification

O Amosy, T Volk, E Shapira, E Ben-David… - Findings of the …, 2024 - aclanthology.org
We address the challenge of building task-agnostic classifiers using only text descriptions,
demonstrating a unified approach to image classification, 3D point cloud classification, and …

Text2Model: Model Induction for Zero-shot Generalization Using Task Descriptions

O Amosy, T Volk, E Ben-David, R Reichart… - arXiv preprint arXiv …, 2022 - arxiv.org
We study the problem of generating a training-free task-dependent visual classifier from text
descriptions without visual samples. This\textit {Text-to-Model}(T2M) problem is closely …