Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Machine learning interatomic potentials and long-range physics

DM Anstine, O Isayev - The Journal of Physical Chemistry A, 2023 - ACS Publications
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …

CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling

B Deng, P Zhong, KJ Jun, J Riebesell, K Han… - Nature Machine …, 2023 - nature.com
Large-scale simulations with complex electron interactions remain one of the greatest
challenges for atomistic modelling. Although classical force fields often fail to describe the …

A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer

TW Ko, JA Finkler, S Goedecker, J Behler - Nature communications, 2021 - nature.com
Abstract Machine learning potentials have become an important tool for atomistic
simulations in many fields, from chemistry via molecular biology to materials science. Most of …

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

OT Unke, S Chmiela, M Gastegger, KT Schütt… - Nature …, 2021 - nature.com
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …

Neural network potentials: A concise overview of methods

E Kocer, TW Ko, J Behler - Annual review of physical chemistry, 2022 - annualreviews.org
In the past two decades, machine learning potentials (MLPs) have reached a level of
maturity that now enables applications to large-scale atomistic simulations of a wide range …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Roadmap on machine learning in electronic structure

HJ Kulik, T Hammerschmidt, J Schmidt, S Botti… - Electronic …, 2022 - iopscience.iop.org
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …

Spice, a dataset of drug-like molecules and peptides for training machine learning potentials

P Eastman, PK Behara, DL Dotson, R Galvelis, JE Herr… - Scientific Data, 2023 - nature.com
Abstract Machine learning potentials are an important tool for molecular simulation, but their
development is held back by a shortage of high quality datasets to train them on. We …

Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials

V Bhat, CP Callaway, C Risko - Chemical Reviews, 2023 - ACS Publications
While a complete understanding of organic semiconductor (OSC) design principles remains
elusive, computational methods─ ranging from techniques based in classical and quantum …