Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges

J Tang, F Yuan, X Shen, Z Wang, M Rao… - Advanced …, 2019 - Wiley Online Library
As the research on artificial intelligence booms, there is broad interest in brain‐inspired
computing using novel neuromorphic devices. The potential of various emerging materials …

Deep learning in spiking neural networks

A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …

Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence

W Fang, Y Chen, J Ding, Z Yu, T Masquelier… - Science …, 2023 - science.org
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …

Incorporating learnable membrane time constant to enhance learning of spiking neural networks

W Fang, Z Yu, Y Chen, T Masquelier… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Spiking Neural Networks (SNNs) have attracted enormous research interest due to
temporal information processing capability, low power consumption, and high biological …

Slayer: Spike layer error reassignment in time

SB Shrestha, G Orchard - Advances in neural information …, 2018 - proceedings.neurips.cc
Abstract Configuring deep Spiking Neural Networks (SNNs) is an exciting research avenue
for low power spike event based computation. However, the spike generation function is non …

A review of learning in biologically plausible spiking neural networks

A Taherkhani, A Belatreche, Y Li, G Cosma… - Neural Networks, 2020 - Elsevier
Artificial neural networks have been used as a powerful processing tool in various areas
such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has …

Hardware and software optimizations for accelerating deep neural networks: Survey of current trends, challenges, and the road ahead

M Capra, B Bussolino, A Marchisio, G Masera… - IEEE …, 2020 - ieeexplore.ieee.org
Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning
(DL) is already present in many applications ranging from computer vision for medicine to …

Clustering-based undersampling in class-imbalanced data

WC Lin, CF Tsai, YH Hu, JS Jhang - Information Sciences, 2017 - Elsevier
Class imbalance is often a problem in various real-world data sets, where one class (ie the
minority class) contains a small number of data points and the other (ie the majority class) …

Supervised learning in spiking neural networks: A review of algorithms and evaluations

X Wang, X Lin, X Dang - Neural Networks, 2020 - Elsevier
As a new brain-inspired computational model of the artificial neural network, a spiking
neural network encodes and processes neural information through precisely timed spike …

Superspike: Supervised learning in multilayer spiking neural networks

F Zenke, S Ganguli - Neural computation, 2018 - direct.mit.edu
A vast majority of computation in the brain is performed by spiking neural networks. Despite
the ubiquity of such spiking, we currently lack an understanding of how biological spiking …