Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics

J Gopalakrishnan, M Neunteufel, J Schöberl… - arXiv preprint arXiv …, 2022 - arxiv.org
The metric tensor of a Riemannian manifold can be approximated using Regge finite
elements and such approximations can be used to compute approximations to the Gauss …

On the definition of curvature in Regge calculus

SH Christiansen - IMA Journal of Numerical Analysis, 2024 - academic.oup.com
Regge calculus defines a curvature for piecewise constant metrics on simplicial complexes
subject to a partial continuity requirement. We prove that if a part of the complex is …

Approximating the Shape Operator with the Surface Hellan–Herrmann–Johnson Element

SW Walker - SIAM Journal on Scientific Computing, 2024 - SIAM
We present a finite element technique for approximating the surface Hessian of a discrete
scalar function on triangulated surfaces embedded in, with or without boundary. We then …

Finite element approximation of scalar curvature in arbitrary dimension

E Gawlik, M Neunteufel - Mathematics of Computation, 2024 - ams.org
We analyze finite element discretizations of scalar curvature in dimension $ N\ge 2$. Our
analysis focuses on piecewise polynomial interpolants of a smooth Riemannian metric $ g …

Finite element approximation of the Levi-Civita connection and its curvature in two dimensions

Y Berchenko-Kogan, ES Gawlik - Foundations of Computational …, 2024 - Springer
We construct finite element approximations of the Levi-Civita connection and its curvature on
triangulations of oriented two-dimensional manifolds. Our construction relies on the Regge …

Geometric triangulations and discrete Laplacians on manifolds: An update

D Glickenstein - Computational Geometry, 2024 - Elsevier
This paper uses the technology of weighted triangulations to study discrete versions of the
Laplacian on piecewise Euclidean manifolds. Given a collection of Euclidean simplices …

Finite element approximation of the Einstein tensor

ES Gawlik, M Neunteufel - arXiv preprint arXiv:2310.18802, 2023 - arxiv.org
We construct and analyze finite element approximations of the Einstein tensor in dimension
$ N\ge 3$. We focus on the setting where a smooth Riemannian metric tensor $ g $ on a …

Analysis of distributional Riemann curvature tensor in any dimension

J Gopalakrishnan, M Neunteufel, J Schöberl… - arXiv preprint arXiv …, 2023 - arxiv.org
In this paper we propose a definition of the distributional Riemann curvature tensor in
dimension $ N\geq 2$ if the underlying metric tensor $ g $ defined on a triangulation …

[PDF][PDF] Generalizing Riemann curvature to Regge metrics

J Gopalakrishnan, M Neunteufel, J Schöberl… - Preprint, 2023 - pdx.edu
In this paper we propose a generalization of the Riemann curvature tensor on manifolds (of
dimension two or higher) endowed with a Regge metric. Specifically, while all components …

Diffusion of tangential tensor fields: numerical issues and influence of geometric properties

E Bachini, P Brandner, T Jankuhn, M Nestler… - Journal of Numerical …, 2024 - degruyter.com
We study the diffusion of tangential tensor-valued data on curved surfaces. For this purpose,
several finite-element-based numerical methods are collected and used to solve a …