Constructing indoor region-based radio map without location labels

Z Xing, J Chen - IEEE Transactions on Signal Processing, 2024 - ieeexplore.ieee.org
Radio map construction requires a large amount of radio measurement data with location
labels, which imposes a high deployment cost. This paper develops a region-based radio …

Optimally weighted PCA for high-dimensional heteroscedastic data

D Hong, F Yang, JA Fessler, L Balzano - SIAM Journal on Mathematics of Data …, 2023 - SIAM
Modern data are increasingly both high-dimensional and heteroscedastic. This paper
considers the challenge of estimating underlying principal components from high …

Calibration-Free Indoor Positioning via Regional Channel Tracing

Z Xing, W Zhao - IEEE Internet of Things Journal, 2024 - ieeexplore.ieee.org
The traditional construction of radio maps demands extensive radio measurement data
accompanied by precise location labels, thus necessitating considerable calibration. This …

The Fisher–Rao Geometry of CES Distributions

F Bouchard, A Breloy, A Collas, A Renaux… - … Distributions in Signal …, 2024 - Springer
When dealing with a parametric statistical model, a Riemannian manifold can naturally
appear by endowing the parameter space with the Fisher information metric. The geometry …

On Elliptical and Inverse Elliptical Wishart distributions

I Ayadi, F Bouchard, F Pascal - arXiv preprint arXiv:2404.17468, 2024 - arxiv.org
This paper deals with the Elliptical Wishart and Inverse Elliptical Wishart distributions, which
play a major role when handling covariance matrices. Similarly to multivariate elliptical …

Streaming Probabilistic PCA for Missing Data with Heteroscedastic Noise

K Gilman, D Hong, JA Fessler, L Balzano - arXiv preprint arXiv …, 2023 - arxiv.org
Streaming principal component analysis (PCA) is an integral tool in large-scale machine
learning for rapidly estimating low-dimensional subspaces of very high dimensional and …

Elliptical Wishart distributions: information geometry, maximum likelihood estimator, performance analysis and statistical learning

I Ayadi, F Bouchard, F Pascal - arXiv preprint arXiv:2411.02726, 2024 - arxiv.org
This paper deals with Elliptical Wishart distributions-which generalize the Wishart
distribution-in the context of signal processing and machine learning. Two algorithms to …

HeMPPCAT: mixtures of probabilistic principal component analysers for data with heteroscedastic noise

AS Xu, L Balzano, JA Fessler - ICASSP 2023-2023 IEEE …, 2023 - ieeexplore.ieee.org
Mixtures of probabilistic principal component analysis (MPPCA) is a well-known mixture
model extension of principal component analysis (PCA). Similar to PCA, MPPCA assumes …

Random matrix theory improved Fr\'echet mean of symmetric positive definite matrices

F Bouchard, A Mian, M Tiomoko, G Ginolhac… - arXiv preprint arXiv …, 2024 - arxiv.org
In this study, we consider the realm of covariance matrices in machine learning, particularly
focusing on computing Fr\'echet means on the manifold of symmetric positive definite …

[PDF][PDF] Riemannian geometry for statistical estimation and learning: application to remote sensing

A Collas - 2022 - jeanphilippeovarlez.com
Remote sensing systems offer an increased opportunity to record multi-temporal and
multidimensional images of the earth's surface. This opportunity greatly increases the …