Modeling conformational states of proteins with AlphaFold

D Sala, F Engelberger, HS Mchaourab… - Current Opinion in …, 2023 - Elsevier
Many proteins exert their function by switching among different structures. Knowing the
conformational ensembles affiliated with these states is critical to elucidate key mechanistic …

[HTML][HTML] Machine learning in protein structure prediction

M AlQuraishi - Current opinion in chemical biology, 2021 - Elsevier
Prediction of protein structure from sequence has been intensely studied for many decades,
owing to the problem's importance and its uniquely well-defined physical and computational …

Simulating 500 million years of evolution with a language model

T Hayes, R Rao, H Akin, NJ Sofroniew, D Oktay, Z Lin… - Science, 2025 - science.org
More than three billion years of evolution have produced an image of biology encoded into
the space of natural proteins. Here we show that language models trained at scale on …

Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution

E Nguyen, M Poli, M Faizi, A Thomas… - Advances in neural …, 2024 - proceedings.neurips.cc
Genomic (DNA) sequences encode an enormous amount of information for gene regulation
and protein synthesis. Similar to natural language models, researchers have proposed …

Evolutionary-scale prediction of atomic-level protein structure with a language model

Z Lin, H Akin, R Rao, B Hie, Z Zhu, W Lu, N Smetanin… - Science, 2023 - science.org
Recent advances in machine learning have leveraged evolutionary information in multiple
sequence alignments to predict protein structure. We demonstrate direct inference of full …

[PDF][PDF] Language models of protein sequences at the scale of evolution enable accurate structure prediction

Z Lin, H Akin, R Rao, B Hie, Z Zhu, W Lu… - BioRxiv, 2022 - biorxiv.org
Large language models have recently been shown to develop emergent capabilities with
scale, going beyond simple pattern matching to perform higher level reasoning and …

DeepLoc 2.0: multi-label subcellular localization prediction using protein language models

V Thumuluri, JJ Almagro Armenteros… - Nucleic acids …, 2022 - academic.oup.com
The prediction of protein subcellular localization is of great relevance for proteomics
research. Here, we propose an update to the popular tool DeepLoc with multi-localization …

High-resolution de novo structure prediction from primary sequence

R Wu, F Ding, R Wang, R Shen, X Zhang, S Luo, C Su… - BioRxiv, 2022 - biorxiv.org
Recent breakthroughs have used deep learning to exploit evolutionary information in
multiple sequence alignments (MSAs) to accurately predict protein structures. However …

Language models enable zero-shot prediction of the effects of mutations on protein function

J Meier, R Rao, R Verkuil, J Liu… - Advances in neural …, 2021 - proceedings.neurips.cc
Modeling the effect of sequence variation on function is a fundamental problem for
understanding and designing proteins. Since evolution encodes information about function …

Single-sequence protein structure prediction using a language model and deep learning

R Chowdhury, N Bouatta, S Biswas, C Floristean… - Nature …, 2022 - nature.com
AlphaFold2 and related computational systems predict protein structure using deep learning
and co-evolutionary relationships encoded in multiple sequence alignments (MSAs) …