Uniformity in Mordell–Lang for curves

V Dimitrov, Z Gao, P Habegger - Annals of Mathematics, 2021 - projecteuclid.org
Consider a smooth, geometrically irreducible, projective curve of genus g≥2 defined over a
number field of degree d≥1. It has at most finitely many rational points by the Mordell …

Adelic line bundles on quasi-projective varieties

X Yuan, SW Zhang - arXiv preprint arXiv:2105.13587, 2021 - arxiv.org
In this paper, we establish a theory of adelic line bundles over quasi-projective varieties over
finitely generated fields. Besides definitions of adelic line bundles, we consider their …

The uniform Mordell-Lang conjecture

Z Gao, T Ge, L Kühne - arXiv preprint arXiv:2105.15085, 2021 - arxiv.org
arXiv:2105.15085v2 [math.NT] 24 Jul 2021 Page 1 arXiv:2105.15085v2 [math.NT] 24 Jul 2021
THE UNIFORM MORDELL–LANG CONJECTURE ZIYANG GAO, TANGLI GE AND LARS …

Generic rank of Betti map and unlikely intersections

Z Gao - Compositio Mathematica, 2020 - cambridge.org
Let satisfies some conditions); it is an important step to prove the bound for the number of
rational points on curves (Dimitrov et al., Uniformity in Mordell–Lang for Curves, Preprint …

[PDF][PDF] Sparsity of postcritically finite maps of Pk and beyond: a complex analytic approach

T Gauthier, J Taflin, G Vigny - Preprint, 2023 - taflin.perso.math.cnrs.fr
An endomorphism f: P k→ Pk of degree d≥ 2 is said to be postcritically finite (or PCF) if its
critical set Crit (f) is preperiodic, ie if there are integers m> n≥ 0 such that fm (Crit (f))⊆ fn …

The geometric dynamical Northcott and Bogomolov properties

T Gauthier, G Vigny - arXiv preprint arXiv:1912.07907, 2019 - arxiv.org
We establish the Geometric Dynamical Northcott Property for polarized endomorphisms of a
projective normal variety over a function field $\mathbf {K} $ of characteristic zero. This …

Random dynamics on real and complex projective surfaces

S Cantat, R Dujardin - Journal für die reine und angewandte …, 2023 - degruyter.com
We initiate the study of random iteration of automorphisms of real and complex projective
surfaces, as well as compact Kähler surfaces, focusing on the classification of stationary …

Heights in families of abelian varieties and the geometric Bogomolov conjecture

Z Gao, P Habegger - Annals of Mathematics, 2019 - projecteuclid.org
On an abelian scheme over a smooth curve over Q a symmetric relatively ample line bundle
defines a fiberwise Néron--Tate height. If the base curve is inside a projective space, we …

Partial Heights, Entire Curves, and the Geometric Bombieri-Lang Conjecture

J Xie, X Yuan - arXiv preprint arXiv:2305.14789, 2023 - arxiv.org
We introduce a new approach to the geometric Bombieri--Lang conjecture for hyperbolic
varieties in characteristic 0. The main idea is to construct an entire curve on a special fiber of …

Geometric Bogomolov conjecture in arbitrary characteristics

J Xie, X Yuan - Inventiones mathematicae, 2022 - Springer
Geometric Bogomolov conjecture in arbitrary characteristics | Inventiones mathematicae
Skip to main content SpringerLink Account Menu Find a journal Publish with us Track your …