Cartan subalgebras in W*-algebras

J Renault - arXiv preprint arXiv:2403.17621, 2024 - arxiv.org
This article presents a proof of the Feldman-Moore theorem on Cartan subalgebras in W*-
algebras based on the non-commutative Stone equivalence between Boolean inverse …

The Rieffel Correspondence for Equivalent Fell Bundles

S Kaliszewski, J Quigg, DP Williams - Journal of the Australian …, 2024 - cambridge.org
Morita equivalence is a fundamental tool in the study of C∗-algebras. For example, Morita
equivalent C∗-algebras A and B share much of their fine structure and have equivalent …

Banach algebras associated to twisted\'{e} tale groupoids: simplicity and pure infiniteness

K Bardadyn, B Kwaśniewski, A McKee - arXiv preprint arXiv:2406.05717, 2024 - arxiv.org
We define reduced and essential Banach algebras associated to a twisted\'{e} tale (not
necessarily Hausdorff) groupoid $(\mathcal {G},\mathcal {L}) $ and extend some …

Sections of Fell bundles over étale groupoids

T Bice - Journal of Mathematical Analysis and Applications, 2024 - Elsevier
We construct the reduced and essential C*-algebra of a Fell bundle over an étale groupoid
(in full generality, without any second countability, local compactness or Hausdorff …

Smooth Cartan triples and Lie twists over Hausdorff\'etale Lie groupoids

A Duwenig, A Sims - arXiv preprint arXiv:2309.09177, 2023 - arxiv.org
We characterise when a smooth structure on the unit space of a Hausdorff\'etale groupoid
can be extended to a Lie-groupoid structure on the whole groupoid. We introduce Lie twists …

[引用][C] Cartan Triples and Fell Bundle Models for C*-algebras

JA Zimmerman - 2023