Electrocatalysis in alkaline media and alkaline membrane-based energy technologies

Y Yang, CR Peltier, R Zeng, R Schimmenti, Q Li… - Chemical …, 2022 - ACS Publications
Hydrogen energy-based electrochemical energy conversion technologies offer the promise
of enabling a transition of the global energy landscape from fossil fuels to renewable energy …

Lithium–oxygen batteries and related systems: potential, status, and future

WJ Kwak, Rosy, D Sharon, C Xia, H Kim… - Chemical …, 2020 - ACS Publications
The goal of limiting global warming to 1.5° C requires a drastic reduction in CO2 emissions
across many sectors of the world economy. Batteries are vital to this endeavor, whether used …

A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent

Y Qiao, H Yang, Z Chang, H Deng, X Li, H Zhou - Nature Energy, 2021 - nature.com
Equipped with a fully lithiated cathode with a bare anode current collector, the anode-free
lithium cell architecture presents remarkable advantages in terms of both energy density and …

New concepts in electrolytes

M Li, C Wang, Z Chen, K Xu, J Lu - Chemical reviews, 2020 - ACS Publications
Over the past decades, Li-ion battery (LIB) has turned into one of the most important
advances in the history of technology due to its extensive and in-depth impact on our life. Its …

Current challenges and routes forward for nonaqueous lithium–air batteries

T Liu, JP Vivek, EW Zhao, J Lei, N Garcia-Araez… - Chemical …, 2020 - ACS Publications
Nonaqueous lithium–air batteries have garnered considerable research interest over the
past decade due to their extremely high theoretical energy densities and potentially low cost …

Electrolyte lifetime in aqueous organic redox flow batteries: a critical review

DG Kwabi, Y Ji, MJ Aziz - Chemical Reviews, 2020 - ACS Publications
Aqueous organic redox flow batteries (RFBs) could enable widespread integration of
renewable energy, but only if costs are sufficiently low. Because the levelized cost of storage …

Evolving aprotic Li–air batteries

Z Wu, Y Tian, H Chen, L Wang, S Qian, T Wu… - Chemical Society …, 2022 - pubs.rsc.org
Lithium–air batteries (LABs) have attracted tremendous attention since the proposal of the
LAB concept in 1996 because LABs have a super high theoretical/practical specific energy …

Triarylmethyl cation redox mediators enhance Li–O2 battery discharge capacities

EJ Askins, MR Zoric, M Li, R Amine, K Amine… - Nature Chemistry, 2023 - nature.com
A major impediment to Li–O2 battery commercialization is the low discharge capacities
resulting from electronically insulating Li2O2 film growth on carbon electrodes. Redox …

Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries

S Nanda, A Gupta, A Manthiram - Advanced Energy Materials, 2021 - Wiley Online Library
The development of high‐energy density batteries is critical to the decarbonization of the
transportation and power generation sectors. For any given lithium‐containing cathode …

Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives

H Zhang, GG Eshetu, X Judez, C Li… - Angewandte Chemie …, 2018 - Wiley Online Library
Lithium metal (Li0) rechargeable batteries (LMBs), such as systems with a Li0 anode and
intercalation and/or conversion type cathode, lithium‐sulfur (Li‐S), and lithium‐oxygen …