[图书][B] Nonlinear potential theory on metric spaces

A Björn, J Björn - 2011 - books.google.com
The $ p $-Laplace equation is the main prototype for nonlinear elliptic problems and forms a
basis for various applications, such as injection moulding of plastics, nonlinear elasticity …

[图书][B] Maximal function methods for Sobolev spaces

J Kinnunen, J Lehrbäck, A Vähäkangas - 2021 - books.google.com
This book discusses advances in maximal function methods related to Poincaré and
Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's …

Lebesgue points of Besov and Triebel–Lizorkin spaces with generalized smoothness

Z Li, D Yang, W Yuan - Mathematics, 2021 - mdpi.com
In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev,
Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric …

[HTML][HTML] Regularity of fractional maximal functions through Fourier multipliers

D Beltran, JP Ramos, O Saari - Journal of Functional Analysis, 2019 - Elsevier
We prove endpoint bounds for derivatives of fractional maximal functions with either smooth
convolution kernel or lacunary set of radii in dimensions n≥ 2. We also show that the …

[HTML][HTML] A metric approach to sparse domination

JM Conde-Alonso, F Di Plinio, I Parissis… - Annali di Matematica …, 2022 - Springer
We present a general approach to sparse domination based on single-scale L^ p L p-
improving as a key assumption. The results are formulated in the setting of metric spaces of …

Regularity of the local fractional maximal function

T Heikkinen, J Kinnunen, J Korvenpää, H Tuominen - Arkiv för matematik, 2015 - Springer
This paper studies smoothing properties of the local fractional maximal operator, which is
defined in a proper subdomain of the Euclidean space. We prove new pointwise estimates …

[HTML][HTML] Best constants for the Hardy–Littlewood maximal operator on finite graphs

J Soria, P Tradacete - Journal of Mathematical Analysis and Applications, 2016 - Elsevier
We study the behavior of averages for functions defined on finite graphs G, in terms of the
Hardy–Littlewood maximal operator M G. We explore the relationship between the geometry …

Geometric properties of infinite graphs and the Hardy–Littlewood maximal operator

J Soria, P Tradacete - Journal d'Analyse Mathématique, 2019 - Springer
We study different geometric properties on infinite graphs, related to the weak-type
boundedness of the Hardy–Littlewood maximal averaging operator. In particular, we …

Fefferman–Stein Inequalities for the Hardy–Littlewood Maximal Function on the Infinite Rooted k-ary Tree

S Ombrosi, IP Rivera-Ríos… - International Mathematics …, 2021 - academic.oup.com
In this paper, weighted endpoint estimates for the Hardy–Littlewood maximal function on the
infinite rooted-ary tree are provided. Motivated by Naor and Tao, the following Fefferman …

[PDF][PDF] Modified Hardy–Littlewood maximal operators on nondoubling metric measure spaces

K Stempak - Annales Fennici Mathematici, 2015 - afm.journal.fi
MODIFIED HARDY–LITTLEWOOD MAXIMAL OPERATORS ON NONDOUBLING METRIC
MEASURE SPACES Page 1 Annales Academiæ Scientiarum Fennicæ Mathematica Volumen …