Emerging chalcogenide thin films for solar energy harvesting devices

S Hadke, M Huang, C Chen, YF Tay, S Chen… - Chemical …, 2021 - ACS Publications
Chalcogenide semiconductors offer excellent optoelectronic properties for their use in solar
cells, exemplified by the commercialization of Cu (In, Ga) Se2-and CdTe-based photovoltaic …

Progress and perspectives of thin film kesterite photovoltaic technology: a critical review

S Giraldo, Z Jehl, M Placidi… - Advanced …, 2019 - Wiley Online Library
The latest progress and future perspectives of thin film photovoltaic kesterite technology are
reviewed herein. Kesterite is currently the most promising emerging fully inorganic thin film …

Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley–Queisser limit

Y Gong, R Qiu, C Niu, J Fu, E Jedlicka… - Advanced Functional …, 2021 - Wiley Online Library
The large open‐circuit voltage deficit (Voc, def) is the key issue that limits kesterite
(Cu2ZnSn (S, Se) 4,[CZTSSe]) solar cell performance. Substitution of Cu+ by larger ionic …

Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin‐Film Solar Cells by Engineering of Local Chemical Environment

J Li, Y Huang, J Huang, G Liang, Y Zhang… - Advanced …, 2020 - Wiley Online Library
Abstract Kesterite‐based Cu2ZnSn (S, Se) 4 semiconductors are emerging as promising
materials for low‐cost, environment‐benign, and high‐efficiency thin‐film photovoltaics …

Defect engineering in multinary earth‐abundant chalcogenide photovoltaic materials

D Shin, B Saparov, DB Mitzi - Advanced Energy Materials, 2017 - Wiley Online Library
Application of zinc‐blende‐related chalcogenide absorbers such as CdTe and Cu (In, Ga)
Se2 (CIGSe) has enabled remarkable advancement in laboratory‐and commercial‐scale …

Cation substitution in earth‐abundant kesterite photovoltaic materials

J Li, D Wang, X Li, Y Zeng, Y Zhang - Advanced Science, 2018 - Wiley Online Library
As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics,
the emerging kesterite‐based Cu2ZnSn (S, Se) 4 (CZTSSe) solar cells have experienced …

Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag) 2 ZnSn (S, Se) 4 solar cells

YF Qi, DX Kou, WH Zhou, ZJ Zhou, QW Tian… - Energy & …, 2017 - pubs.rsc.org
Although the substitution of Cu by Ag to suppress CuZn defects offers several advantages in
overcoming the large open-circuit voltage (Voc) deficit for Cu2ZnSn (S, Se) 4 (CZTSSe) …

Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies

F Liu, Q Zeng, J Li, X Hao, A Ho-Baillie, J Tang… - Materials Today, 2020 - Elsevier
The efficient conversion of solar energy to electricity for human utilization heavily relies on
the development of solar cells. Nowadays, a variety of high-performance solar cells are …

Defect Engineering in Earth‐Abundant Cu2ZnSn(S,Se)4 Photovoltaic Materials via Ga3+‐Doping for over 12% Efficient Solar Cells

Y Du, S Wang, Q Tian, Y Zhao, X Chang… - Advanced Functional …, 2021 - Wiley Online Library
The efficiency of earth‐abundant Cu2ZnSn (S, Se) 4 (CZTSSe) solar cells is considerably
lower than the Shockley–Queisser limit. One of the main reasons for this is the presence of …

The steady rise of kesterite solar cells

SK Wallace, DB Mitzi, A Walsh - ACS Energy Letters, 2017 - ACS Publications
Could slow and steady win the race to sustainable energy generation? While perovskite
solar cells are currently at the forefront of photovoltaic research activity, we argue in this …