Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

Machine learning for electronically excited states of molecules

J Westermayr, P Marquetand - Chemical Reviews, 2020 - ACS Publications
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …

Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery

AS Rosen, SM Iyer, D Ray, Z Yao, A Aspuru-Guzik… - Matter, 2021 - cell.com
The modular nature of metal–organic frameworks (MOFs) enables synthetic control over
their physical and chemical properties, but it can be difficult to know which MOFs would be …

Neural network potential energy surfaces for small molecules and reactions

S Manzhos, T Carrington Jr - Chemical Reviews, 2020 - ACS Publications
We review progress in neural network (NN)-based methods for the construction of
interatomic potentials from discrete samples (such as ab initio energies) for applications in …

A critical review of machine learning of energy materials

C Chen, Y Zuo, W Ye, X Li, Z Deng… - Advanced Energy …, 2020 - Wiley Online Library
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …

From DFT to machine learning: recent approaches to materials science–a review

GR Schleder, ACM Padilha, CM Acosta… - Journal of Physics …, 2019 - iopscience.iop.org
Recent advances in experimental and computational methods are increasing the quantity
and complexity of generated data. This massive amount of raw data needs to be stored and …

Machine learning in scanning transmission electron microscopy

SV Kalinin, C Ophus, PM Voyles, R Erni… - Nature Reviews …, 2022 - nature.com
Scanning transmission electron microscopy (STEM) has emerged as a uniquely powerful
tool for structural and functional imaging of materials on the atomic level. Driven by …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …