Image segmentation using deep learning: A survey

S Minaee, Y Boykov, F Porikli, A Plaza… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Image segmentation is a key task in computer vision and image processing with important
applications such as scene understanding, medical image analysis, robotic perception …

A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities

W Han, X Zhang, Y Wang, L Wang, X Huang… - ISPRS Journal of …, 2023 - Elsevier
Due to limited resources and environmental pollution, monitoring the geological
environment has become essential for many countries' sustainable development. As various …

Segment anything in high quality

L Ke, M Ye, M Danelljan, YW Tai… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract The recent Segment Anything Model (SAM) represents a big leap in scaling up
segmentation models, allowing for powerful zero-shot capabilities and flexible prompting …

Segnext: Rethinking convolutional attention design for semantic segmentation

MH Guo, CZ Lu, Q Hou, Z Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …

PIDNet: A real-time semantic segmentation network inspired by PID controllers

J Xu, Z Xiong, SP Bhattacharyya - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Two-branch network architecture has shown its efficiency and effectiveness in real-time
semantic segmentation tasks. However, direct fusion of high-resolution details and low …

SegFormer: Simple and efficient design for semantic segmentation with transformers

E Xie, W Wang, Z Yu, A Anandkumar… - Advances in neural …, 2021 - proceedings.neurips.cc
We present SegFormer, a simple, efficient yet powerful semantic segmentation framework
which unifies Transformers with lightweight multilayer perceptron (MLP) decoders …

Semi-supervised semantic segmentation with cross pseudo supervision

X Chen, Y Yuan, G Zeng… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
In this paper, we study the semi-supervised semantic segmentation problem via exploring
both labeled data and extra unlabeled data. We propose a novel consistency regularization …

RingMo: A remote sensing foundation model with masked image modeling

X Sun, P Wang, W Lu, Z Zhu, X Lu, Q He… - … on Geoscience and …, 2022 - ieeexplore.ieee.org
Deep learning approaches have contributed to the rapid development of remote sensing
(RS) image interpretation. The most widely used training paradigm is to use ImageNet …

Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d

J Philion, S Fidler - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
The goal of perception for autonomous vehicles is to extract semantic representations from
multiple sensors and fuse these representations into a single “bird's-eye-view” coordinate …

Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud segmentation

J Xu, R Zhang, J Dou, Y Zhu… - Proceedings of the …, 2021 - openaccess.thecvf.com
Point clouds can be represented in many forms (views), typically, point-based sets, voxel-
based cells or range-based images (ie, panoramic view). The point-based view is …