Normalization for cubical type theory

J Sterling, C Angiuli - 2021 36th Annual ACM/IEEE Symposium …, 2021 - ieeexplore.ieee.org
We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major
open problem in the syntactic metatheory of cubical type theory. Our normalization result is …

Internal parametricity, without an interval

T Altenkirch, Y Chamoun, A Kaposi… - Proceedings of the ACM …, 2024 - dl.acm.org
Parametricity is a property of the syntax of type theory implying, eg, that there is only one
function having the type of the polymorphic identity function. Parametricity is usually proven …

Strict universes for Grothendieck topoi

D Gratzer, M Shulman, J Sterling - arXiv preprint arXiv:2202.12012, 2022 - arxiv.org
Hofmann and Streicher famously showed how to lift Grothendieck universes into presheaf
topoi, and Streicher has extended their result to the case of sheaf topoi by sheafification. In …

Internal and observational parametricity for cubical agda

A Van Muylder, A Nuyts, D Devriese - Proceedings of the ACM on …, 2024 - dl.acm.org
Two approaches exist to incorporate parametricity into proof assistants based on dependent
type theory. On the one hand, parametricity translations conveniently compute parametricity …

Internal parametricity for cubical type theory

E Cavallo, R Harper - Logical Methods in Computer Science, 2021 - lmcs.episciences.org
We define a computational type theory combining the contentful equality structure of
cartesian cubical type theory with internal parametricity primitives. The combined theory …

Cubical syntax for reflection-free extensional equality

J Sterling, C Angiuli, D Gratzer - arXiv preprint arXiv:1904.08562, 2019 - arxiv.org
We contribute XTT, a cubical reconstruction of Observational Type Theory which extends
Martin-L\" of's intensional type theory with a dependent equality type that enjoys function …

[PDF][PDF] Cartesian cubical model categories

S Awodey - arXiv preprint arXiv:2305.00893, 2023 - arxiv.org
arXiv:2305.00893v2 [math.CT] 14 Jul 2023 Page 1 arXiv:2305.00893v2 [math.CT] 14 Jul
2023 CARTESIAN CUBICAL MODEL CATEGORIES STEVE AWODEY Abstract. The …

Formalizing the∞-Categorical Yoneda Lemma

N Kudasov, E Riehl, J Weinberger - Proceedings of the 13th ACM …, 2024 - dl.acm.org
Formalized 1-category theory forms a core component of various libraries of mathematical
proofs. However, more sophisticated results in fields from algebraic topology to theoretical …

[PDF][PDF] Computational semantics of Cartesian cubical type theory

C Angiuli - To appear. PhD thesis. Pittsburgh, PA, USA …, 2019 - staging.csd.cmu.edu
Dependent type theories are a family of logical systems that serve as expressive functional
programming languages and as the basis of many proof assistants. In the past decade, type …

[PDF][PDF] A cubical language for Bishop sets

J Sterling, C Angiuli, D Gratzer - Logical Methods in Computer …, 2022 - lmcs.episciences.org
We present XTT, a version of Cartesian cubical type theory specialized for Bishop setsa la
Coquand, in which every type enjoys a definitional version of the uniqueness of identity …