Sixth-order hybrid finite difference methods for elliptic interface problems with mixed boundary conditions

Q Feng, B Han, P Minev - Journal of Computational Physics, 2024 - Elsevier
In this paper, we develop sixth-order hybrid finite difference methods (FDMs) for the elliptic
interface problem−∇⋅(a∇ u)= f in Ω﹨ Γ, where Γ is a smooth interface inside Ω. The …

Compact 9-point finite difference methods with high accuracy order and/or M-matrix property for elliptic cross-interface problems

Q Feng, B Han, P Minev - Journal of Computational and Applied …, 2023 - Elsevier
In this paper we develop finite difference schemes for elliptic problems with piecewise
continuous coefficients that have (possibly huge) jumps across fixed internal interfaces. In …

Distinct Numerical Solutions for Elliptic Cross-Interface Problems Using Finite Element and Finite Difference Methods

Q Feng - arXiv preprint arXiv:2408.10459, 2024 - arxiv.org
In this paper, we discuss the second-order finite element method (FEM) and finite difference
method (FDM) for numerically solving elliptic cross-interface problems characterized by …

Fourier Analysis of Finite Difference Schemes for the Helmholtz Equation: Sharp Estimates and Relative Errors

MJ Gander, H Zhang - arXiv preprint arXiv:2501.16696, 2025 - arxiv.org
We propose an approach based on Fourier analysis to wavenumber explicit sharp
estimation of absolute and relative errors of finite difference methods for the Helmholtz …

Galerkin Scheme Using Biorthogonal Wavelets on Intervals for 2D Elliptic Interface Problems

B Han, M Michelle - arXiv preprint arXiv:2410.16596, 2024 - arxiv.org
This paper introduces a wavelet Galerkin method for solving two-dimensional elliptic
interface problems of the form in $-\nabla\cdot (a\nabla u)= f $ in $\Omega\backslash …

Asymptotic Dispersion Correction in General Finite Difference Schemes for Helmholtz Problems

PH Cocquet, MJ Gander - SIAM Journal on Scientific Computing, 2024 - SIAM
Most numerical approximations of frequency-domain wave propagation problems suffer from
the so-called dispersion error, which is the fact that plane waves at the discrete level …

Sixth-Order Hybrid FDMs and/or the M-Matrix Property for Elliptic Interface Problems with Mixed Boundary Conditions

Q Feng, B Han, P Minev - arXiv preprint arXiv:2306.13001, 2023 - arxiv.org
In this paper, we develop sixth-order hybrid finite difference methods (FDMs) for the elliptic
interface problem $-\nabla\cdot (a\nabla u)= f $ in $\Omega\backslash\Gamma $, where …

Hybrid finite difference schemes for elliptic interface problems with discontinuous and high-contrast variable coefficients

Q Feng, B Han, P Minev - arXiv preprint arXiv:2205.01256, 2022 - arxiv.org
For elliptic interface problems with discontinuous coefficients, the maximum accuracy order
for compact 9-point finite difference scheme in irregular points is three [7]. The discontinuous …

Optimisation topologique en mécanique des fluides et analyse numérique de problèmes de propagation d'ondes en régime harmonique

PH Cocquet - 2024 - hal.science
Ce manuscrit est une synthèse de mes activités de recherche réalisées depuis mon
recrutement en tant que Maître de conférences. Une première partie décrit mon curriculum …

Fast High Order Algorithm for Three-Dimensional Helmholtz Equation Involving Impedance Boundary Condition with Large Wave Numbers

C Tong, X Fang, M Zhao - American Journal …, 2023 - science.scholarsacademic.com
Acoustic fields with impedance boundary conditions have high engineering applications,
such as noise control and evaluation of sound insulation materials, and can be …