A Algaba, C García, M Reyes - Mediterranean Journal of Mathematics, 2021 - Springer
Analytical Integrability of Perturbations of Quadratic Systems | Mediterranean Journal of Mathematics Skip to main content SpringerLink Account Menu Find a journal Publish with us …
D Djedid, J Llibre, A Makhlouf - Chaos, Solitons & Fractals, 2021 - Elsevier
A Hopf equilibrium of a differential system in R 2 is an equilibrium point whose linear part has eigenvalues±ω i with ω≠ 0, where i=− 1. We provide necessary and sufficient …
A Algaba, C García, M Reyes, J Giné - Journal of Applied Analysis …, 2024 - jaac-online.com
We consider analytic perturbations of quadratic homogeneous differential systems having an isolated singularity at the origin. Here we characterize the analytically integrable …
We consider the analytically integrable perturbations of cubic homogeneous differential systems whose origin is an isolated singularity. We prove that are orbitally equivalent to the …
We characterize the analytic planar vector fields orbitally equivalent to its quasi- homogeneous leader term, by means the existence of a class of inverse integrating factors …
We deal with analytic three-dimensional symmetric systems whose origin is a Hopf-zero singularity. Once it is not completely analytically integrable, we provide criteria on the …
Le présent travail, tente de mettre en évidence la composition et la structure de l'avifaune nicheuse des aulnaies en Algérie plus particulièrement celle d'El Kala et l'effet du …