From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

[HTML][HTML] Notions of explainability and evaluation approaches for explainable artificial intelligence

G Vilone, L Longo - Information Fusion, 2021 - Elsevier
Abstract Explainable Artificial Intelligence (XAI) has experienced a significant growth over
the last few years. This is due to the widespread application of machine learning, particularly …

Explainable artificial intelligence: a systematic review

G Vilone, L Longo - arXiv preprint arXiv:2006.00093, 2020 - arxiv.org
Explainable Artificial Intelligence (XAI) has experienced a significant growth over the last few
years. This is due to the widespread application of machine learning, particularly deep …

A historical perspective of explainable Artificial Intelligence

R Confalonieri, L Coba, B Wagner… - … Reviews: Data Mining …, 2021 - Wiley Online Library
Abstract Explainability in Artificial Intelligence (AI) has been revived as a topic of active
research by the need of conveying safety and trust to users in the “how” and “why” of …

A survey of methods for explaining black box models

R Guidotti, A Monreale, S Ruggieri, F Turini… - ACM computing …, 2018 - dl.acm.org
In recent years, many accurate decision support systems have been constructed as black
boxes, that is as systems that hide their internal logic to the user. This lack of explanation …

Explainable recommendation: A survey and new perspectives

Y Zhang, X Chen - Foundations and Trends® in Information …, 2020 - nowpublishers.com
Explainable recommendation attempts to develop models that generate not only high-quality
recommendations but also intuitive explanations. The explanations may either be post-hoc …

Personalized prompt learning for explainable recommendation

L Li, Y Zhang, L Chen - ACM Transactions on Information Systems, 2023 - dl.acm.org
Providing user-understandable explanations to justify recommendations could help users
better understand the recommended items, increase the system's ease of use, and gain …

Manipulating and measuring model interpretability

F Poursabzi-Sangdeh, DG Goldstein… - Proceedings of the …, 2021 - dl.acm.org
With machine learning models being increasingly used to aid decision making even in high-
stakes domains, there has been a growing interest in developing interpretable models …

Counterfactual explainable recommendation

J Tan, S Xu, Y Ge, Y Li, X Chen, Y Zhang - Proceedings of the 30th ACM …, 2021 - dl.acm.org
By providing explanations for users and system designers to facilitate better understanding
and decision making, explainable recommendation has been an important research …

'It's Reducing a Human Being to a Percentage' Perceptions of Justice in Algorithmic Decisions

R Binns, M Van Kleek, M Veale, U Lyngs… - Proceedings of the …, 2018 - dl.acm.org
Data-driven decision-making consequential to individuals raises important questions of
accountability and justice. Indeed, European law provides individuals limited rights …