Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression

YN Marlim, L Suryati, N Agustina - Jurnal Nasional Teknik …, 2022 - journal.ugm.ac.id
Diabetes is one of the deadliest diseases in the world, including in Indonesia. It can cause
complications in numerous body parts and increase the overall risk of death. One way to …

Deteksi Anomali Menggunakan Ensemble Learning Dan Random Oversampling Pada Penipuan Transaksi Keuangan

DRK Saputra, YV Via… - Jurnal Informatika dan …, 2024 - journal.eng.unila.ac.id
Di era digital, transaksi keuangan semakin beralih ke metode nontunai, karena sifatnya
yang nyaman dan efisien. Namun, peningkatan penggunaan kartu kredit dan transaksi …

[PDF][PDF] Implementasi Logistic Regression Dalam Sistem Diagnosa Penyakit Diabetes Dengan KNN

IWT Wahyudia, IGAGA Kadyanana - Jurnal Elektronik Ilmu Komputer …, 2023 - academia.edu
Diabetes is a serious chronic disease that occurs when the pancreas does not produce
enough insulin. The number of Indonesians suffering from diabetes is estimated to reach 8.2 …

Optimasi Prediksi Pemasaran Nasabah Deposito Bank dengan Metode Klasifikasi Logistic Regression

A Mutiarachim, JSP Tyoso - Jurnal Cakrawala Informasi, 2024 - itbsemarang.ac.id
The study aims to determine the impact of the Logistic Regression method on the
classification of customer bank deposits, using a public UCI Bank Marketing dataset, which …

Penerapan Model CRISP-DM untuk Prediksi Penyakit Diabetes Menggunakan Metode K-Nearest Neighbor dan Logistic regression

AAP Lo, VJE Tjioe - … Universitas Ma Chung (Informatika & Sistem …, 2024 - ocs.machung.ac.id
Penyakit diabetes merupakan tantangan kesehatan global yang semakin meningkat.
Penelitian ini menggunakan model CRISP-DM, metode K-Nearest Neighbor (K-NN) dan …

IMPLEMENTATION OF DIABETES PREDICTION MODEL USING RANDOM FOREST ALGORITHM, K-NEAREST NEIGHBOR, AND LOGISTIC REGRESSION

R Pratama, AM Siregar, SAP Lestari… - … Teknik Informatika (Jutif …, 2024 - jutif.if.unsoed.ac.id
Diabetes is a serious metabolic disease that can cause various health complications. With
more than 537 million people worldwide living with diabetes in 2021, early detection is …

Comparison of Dimensionality Reduction Techniques to Improve Performance and Efficiency of Logistic Regression in Network Anomaly Detection

MIM Ahfa, L Hakim, MI Rosadi - Journal of Information …, 2025 - jurnal.untag-sby.ac.id
Network anomaly detection is a crucial process to identify abnormal network traffic, which
may pose a security threat. This research aims to improve the performance and efficiency of …

Comparison of Diabetes Disease Classification Models Using Logistic Regression and Random Forest Algorithms

AM Siregar, S Faisal, AR Pratama - Faktor Exacta, 2024 - journal.lppmunindra.ac.id
Diabetes is a lifelong chronic disease that disrupts blood sugar regulation. Diabetes is a life-
threatening condition that, if left untreated, can lead to death and other health problems …

Patient Health Classification Using Various Machine Learning Algorithms

AR Shah, AA Mathew, V Karthikeyan… - 2024 Control …, 2024 - ieeexplore.ieee.org
This paper analyzes the Body Performance dataset using several machine learning
algorithms to evaluate individuals' health according to their 11 physical characteristics. The …

Accuracy evaluation of Naive Bayes and Logistic Regression for classification with binary attributes and classes

E López-Pezoa, A Cáceres-Estigarribia… - … científicos de la …, 2022 - scielo.iics.una.py
Abstract LOPEZ-PEZOA, Edgar; CACERES-ESTIGARRIBIA, Antoliano; GRILLO, Sebastián
Alberto and HERRERA, Edher. Accuracy evaluation of Naive Bayes and Logistic …