A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

[HTML][HTML] A survey on large language model based autonomous agents

L Wang, C Ma, X Feng, Z Zhang, H Yang… - Frontiers of Computer …, 2024 - Springer
Autonomous agents have long been a research focus in academic and industry
communities. Previous research often focuses on training agents with limited knowledge …

Tree of thoughts: Deliberate problem solving with large language models

S Yao, D Yu, J Zhao, I Shafran… - Advances in …, 2024 - proceedings.neurips.cc
Abstract Language models are increasingly being deployed for general problem solving
across a wide range of tasks, but are still confined to token-level, left-to-right decision …

Generative agents: Interactive simulacra of human behavior

JS Park, J O'Brien, CJ Cai, MR Morris, P Liang… - Proceedings of the 36th …, 2023 - dl.acm.org
Believable proxies of human behavior can empower interactive applications ranging from
immersive environments to rehearsal spaces for interpersonal communication to prototyping …

Palm-e: An embodied multimodal language model

D Driess, F Xia, MSM Sajjadi, C Lynch… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models excel at a wide range of complex tasks. However, enabling general
inference in the real world, eg, for robotics problems, raises the challenge of grounding. We …

The flan collection: Designing data and methods for effective instruction tuning

S Longpre, L Hou, T Vu, A Webson… - International …, 2023 - proceedings.mlr.press
We study the design decision of publicly available instruction tuning methods, by
reproducing and breaking down the development of Flan 2022 (Chung et al., 2022) …

Camel: Communicative agents for" mind" exploration of large language model society

G Li, H Hammoud, H Itani… - Advances in Neural …, 2023 - proceedings.neurips.cc
The rapid advancement of chat-based language models has led to remarkable progress in
complex task-solving. However, their success heavily relies on human input to guide the …

Chameleon: Plug-and-play compositional reasoning with large language models

P Lu, B Peng, H Cheng, M Galley… - Advances in …, 2024 - proceedings.neurips.cc
Large language models (LLMs) have achieved remarkable progress in solving various
natural language processing tasks due to emergent reasoning abilities. However, LLMs …

Graph of thoughts: Solving elaborate problems with large language models

M Besta, N Blach, A Kubicek, R Gerstenberger… - Proceedings of the …, 2024 - ojs.aaai.org
Abstract We introduce Graph of Thoughts (GoT): a framework that advances prompting
capabilities in large language models (LLMs) beyond those offered by paradigms such as …

React: Synergizing reasoning and acting in language models

S Yao, J Zhao, D Yu, N Du, I Shafran… - arXiv preprint arXiv …, 2022 - arxiv.org
While large language models (LLMs) have demonstrated impressive capabilities across
tasks in language understanding and interactive decision making, their abilities for …