P Munch, M Kronbichler - The International Journal of High …, 2024 - journals.sagepub.com
This contribution presents data-locality optimizations of the additive Schwarz method (ASM) based on the fast-diagonalization method defined on overlapping cell-centric and vertex-star …
The Riesz maps of the de Rham complex frequently arise as subproblems in the construction of fast preconditioners for more complicated problems. In this work, we present …
We present a novel, highly scalable and optimized solver for turbulent flows based on high- order discontinuous Galerkin discretizations of the incompressible Navier-Stokes equations …
M Phillips, S Kerkemeier, P Fischer - … of the 2022 SIAM Conference on Parallel …, 2022 - SIAM
The Poisson pressure solve resulting from the spectral element discretization of the incompressible Navier-Stokes equation requires fast, robust, and scalable preconditioning …
The solution to the Poisson equation arising from the spectral element discretization of the incompressible Navier-Stokes equation requires robust preconditioning strategies. One …
W Pazner, T Kolev, JS Camier - The International Journal of …, 2023 - journals.sagepub.com
In this article, we present algorithms and implementations for the end-to-end GPU acceleration of matrix-free low-order-refined preconditioning of high-order finite element …
In this paper we present a new GPU-oriented mesh optimization method based on high- order finite elements. Our approach relies on node movement with fixed topology, through …
W Pazner, T Kolev, PS Vassilevski - SIAM Journal on Scientific Computing, 2024 - SIAM
This work describes the development of matrix-free GPU-accelerated solvers for high-order finite element problems in. The solvers are applicable to grad-div and Darcy problems in …
The solution to the Poisson equation arising from the spectral element discretization of the incompressible Navier-Stokes equation requires robust preconditioning strategies. Two …