Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

Deep learning in bioinformatics

S Min, B Lee, S Yoon - Briefings in bioinformatics, 2017 - academic.oup.com
In the era of big data, transformation of biomedical big data into valuable knowledge has
been one of the most important challenges in bioinformatics. Deep learning has advanced …

Emotionmeter: A multimodal framework for recognizing human emotions

WL Zheng, W Liu, Y Lu, BL Lu… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
In this paper, we present a multimodal emotion recognition framework called EmotionMeter
that combines brain waves and eye movements. To increase the feasibility and wearability …

Deep learning with convolutional neural networks for EEG decoding and visualization

RT Schirrmeister, JT Springenberg… - Human brain …, 2017 - Wiley Online Library
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized
computer vision through end‐to‐end learning, that is, learning from the raw data. There is …

EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces

VJ Lawhern, AJ Solon, NR Waytowich… - Journal of neural …, 2018 - iopscience.iop.org
Objective. Brain–computer interfaces (BCI) enable direct communication with a computer,
using neural activity as the control signal. This neural signal is generally chosen from a …

Learning temporal information for brain-computer interface using convolutional neural networks

S Sakhavi, C Guan, S Yan - IEEE transactions on neural …, 2018 - ieeexplore.ieee.org
Deep learning (DL) methods and architectures have been the state-of-the-art classification
algorithms for computer vision and natural language processing problems. However, the …

A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series

S Chambon, MN Galtier, PJ Arnal… - … on Neural Systems …, 2018 - ieeexplore.ieee.org
Sleep stage classification constitutes an important preliminary exam in the diagnosis of
sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of …

DepHNN: a novel hybrid neural network for electroencephalogram (EEG)-based screening of depression

G Sharma, A Parashar, AM Joshi - Biomedical signal processing and …, 2021 - Elsevier
Depression is a psychological disorder characterized by the continuous occurrence of bad
mood state. It is critical to understand that this disorder is severely affecting people of …

Focal onset seizure prediction using convolutional networks

H Khan, L Marcuse, M Fields… - IEEE Transactions on …, 2017 - ieeexplore.ieee.org
Objective: This paper investigates the hypothesis that focal seizures can be predicted using
scalp electroencephalogram (EEG) data. Our first aim is to learn features that distinguish …

Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks

JX Chen, PW Zhang, ZJ Mao, YF Huang… - IEEE …, 2019 - ieeexplore.ieee.org
In order to improve the accuracy of emotional recognition by end-to-end automatic learning
of emotional features in spatial and temporal dimensions of electroencephalogram (EEG) …