[图书][B] Ergodic theory

D Kerr, H Li - 2016 - Springer
Ergodic theory in its broadest sense is the study of group actions on measure spaces.
Historically the discipline has tended to concentrate on the framework of integer actions, in …

Cartan subalgebras in W*-algebras

J Renault - arXiv preprint arXiv:2403.17621, 2024 - arxiv.org
This article presents a proof of the Feldman-Moore theorem on Cartan subalgebras in W*-
algebras based on the non-commutative Stone equivalence between Boolean inverse …

Examples in the entropy theory of countable group actions

L Bowen - Ergodic Theory and Dynamical Systems, 2020 - cambridge.org
Kolmogorov–Sinai entropy is an invariant of measure-preserving actions of the group of
integers that is central to classification theory. There are two recently developed invariants …

Unique Cartan decomposition for II1 factors arising from arbitrary actions of free groups

S Popa, S Vaes - 2014 - projecteuclid.org
We prove that for any free ergodic probability measure-preserving action F n↷(X, μ) of a free
group on n generators F n, 2≤ n≤∞, the associated group measure space II1 factor …

Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups

S Popa, S Vaes - Journal für die reine und angewandte Mathematik …, 2014 - degruyter.com
We prove that for any free ergodic probability measure preserving action Γ→(X, μ) of a non-
elementary hyperbolic group, or a lattice in a rank one simple Lie group, the associated …

Properly proximal von Neumann algebras

C Ding, SK Elayavalli, J Peterson - Duke Mathematical Journal, 2023 - projecteuclid.org
We introduce the notion of proper proximality for finite von Neumann algebras, which
naturally extends the notion of proper proximality for groups. Apart from the group von …

On the structural theory of  factors of negatively curved groups

I Chifan, T Sinclair - Annales scientifiques de l'École normale …, 2013 - numdam.org
R.–Ozawa a montré dans [21] que, pour un groupe cci hyperbolique, le facteur de type II1
associé est solide. En devéloppant une nouvelle approche, qui combine les méthodes de …

A class of superrigid group von Neumann algebras

A Ioana, S Popa, S Vaes - Annals of mathematics, 2013 - JSTOR
We prove that for any group G in a fairly large class of generalized wreath product groups,
the associated von Neumann algebra LG completely" remembers" the group G. More …

Rigidity for von Neumann algebras

A Ioana - Proceedings of the International Congress of …, 2018 - World Scientific
We survey some of the progress made recently in the classification of von Neumann
algebras arising from countable groups and their measure preserving actions on probability …

Group measure space decomposition of II1 factors and W*-superrigidity

S Popa, S Vaes - Inventiones mathematicae, 2010 - Springer
We prove a “unique crossed product decomposition” result for group measure space II 1
factors L∞(X)⋊ Γ arising from arbitrary free ergodic probability measure preserving (pmp) …