Vector-valued general Dirichlet series

D Carando, A Defant, F Marceca… - arXiv preprint arXiv …, 2020 - arxiv.org
Opened up by early contributions due to, among others, H. Bohr, Hardy-Riesz, Bohnenblust-
Hille, Neder and Landau the last 20 years show a substantial revival of systematic research …

Hardy spaces of general Dirichlet series-a survey

A Defant, I Schoolmann - arXiv preprint arXiv:1902.02073, 2019 - arxiv.org
The main purpose of this article is to survey on some key elements of a recent $\mathcal {H}
_p $-theory of general Dirichlet series $\sum a_n e^{-\lambda_ {n} s} $, which was mainly …

Littlewood-type theorems for random Dirichlet series

J Chen, X Guo, M Wang - arXiv preprint arXiv:2402.00314, 2024 - arxiv.org
In this paper, we completely give the solution of the problem of Littlewood-type
randomization in the Hardy and Bergman spaces of Dirichlet series. The Littlewood-type …

Volterra operators between Hardy spaces of vector-valued Dirichlet series

J Chen - arXiv preprint arXiv:2404.04896, 2024 - arxiv.org
Let $2\leq p<\infty $ and $ X $ be a complex infinite-dimensional Banach space. It is proved
that if $ X $ is $ p $-uniformly PL-convex, then there is no nontrivial bounded Volterra …

Banach 空间中级数弱无条件收敛性的若干等价刻画

李瑶, 卢霁萌 - 重庆理工大学学报(自然科学), 2021 - clgzk.qks.cqut.edu.cn
阐述了范数拓扑下赋范空间中无穷级数的无条件收敛性, 子列收敛性, 有界乘子收敛性,
重排收敛性和符号收敛性及对应的Cauchy 性质的定义及其之间的关系, 回顾了级数绝对收敛性 …

Decoupling inequalities with exponential constants

D Carando, F Marceca, P Sevilla-Peris - Mathematische Annalen, 2023 - Springer
Decoupling inequalities disentangle complex dependence structures of random objects so
that they can be analyzed by means of standard tools from the theory of independent …