Diffusion models in vision: A survey

FA Croitoru, V Hondru, RT Ionescu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …

Blockchain-based federated learning for securing internet of things: A comprehensive survey

W Issa, N Moustafa, B Turnbull, N Sohrabi… - ACM Computing …, 2023 - dl.acm.org
The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering
significant advantages in agility, responsiveness, and potential environmental benefits. The …

A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

See through gradients: Image batch recovery via gradinversion

H Yin, A Mallya, A Vahdat, JM Alvarez… - Proceedings of the …, 2021 - openaccess.thecvf.com
Training deep neural networks requires gradient estimation from data batches to update
parameters. Gradients per parameter are averaged over a set of data and this has been …

Evaluating gradient inversion attacks and defenses in federated learning

Y Huang, S Gupta, Z Song, K Li… - Advances in neural …, 2021 - proceedings.neurips.cc
Gradient inversion attack (or input recovery from gradient) is an emerging threat to the
security and privacy preservation of Federated learning, whereby malicious eavesdroppers …

End-to-end privacy preserving deep learning on multi-institutional medical imaging

G Kaissis, A Ziller, J Passerat-Palmbach… - Nature Machine …, 2021 - nature.com
Using large, multi-national datasets for high-performance medical imaging AI systems
requires innovation in privacy-preserving machine learning so models can train on sensitive …

Federated learning: A survey on enabling technologies, protocols, and applications

M Aledhari, R Razzak, RM Parizi, F Saeed - IEEE Access, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive study of Federated Learning (FL) with an emphasis
on enabling software and hardware platforms, protocols, real-life applications and use …

Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges

N Rodríguez-Barroso, D Jiménez-López, MV Luzón… - Information …, 2023 - Elsevier
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …

Federated learning with buffered asynchronous aggregation

J Nguyen, K Malik, H Zhan… - International …, 2022 - proceedings.mlr.press
Scalability and privacy are two critical concerns for cross-device federated learning (FL)
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …

Cafe: Catastrophic data leakage in vertical federated learning

X Jin, PY Chen, CY Hsu, CM Yu… - Advances in Neural …, 2021 - proceedings.neurips.cc
Recent studies show that private training data can be leaked through the gradients sharing
mechanism deployed in distributed machine learning systems, such as federated learning …