[HTML][HTML] A review of uncertainty quantification in deep learning: Techniques, applications and challenges

M Abdar, F Pourpanah, S Hussain, D Rezazadegan… - Information fusion, 2021 - Elsevier
Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of
uncertainties during both optimization and decision making processes. They have been …

A review of deep learning methods for semantic segmentation of remote sensing imagery

X Yuan, J Shi, L Gu - Expert Systems with Applications, 2021 - Elsevier
Semantic segmentation of remote sensing imagery has been employed in many
applications and is a key research topic for decades. With the success of deep learning …

Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks

D Hong, B Zhang, H Li, Y Li, J Yao, C Li… - Remote Sensing of …, 2023 - Elsevier
Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-
modality-dominated remote sensing (RS) applications, especially with an emphasis on …

Swin transformer embedding UNet for remote sensing image semantic segmentation

X He, Y Zhou, J Zhao, D Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Global context information is essential for the semantic segmentation of remote sensing (RS)
images. However, most existing methods rely on a convolutional neural network (CNN) …

UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery

L Wang, R Li, C Zhang, S Fang, C Duan, X Meng… - ISPRS Journal of …, 2022 - Elsevier
Semantic segmentation of remotely sensed urban scene images is required in a wide range
of practical applications, such as land cover mapping, urban change detection …

A deep translation (GAN) based change detection network for optical and SAR remote sensing images

X Li, Z Du, Y Huang, Z Tan - ISPRS Journal of Photogrammetry and …, 2021 - Elsevier
With the development of space-based imaging technology, a larger and larger number of
images with different modalities and resolutions are available. The optical images reflect the …

A survey on deep learning-based change detection from high-resolution remote sensing images

H Jiang, M Peng, Y Zhong, H Xie, Z Hao, J Lin, X Ma… - Remote Sensing, 2022 - mdpi.com
Change detection based on remote sensing images plays an important role in the field of
remote sensing analysis, and it has been widely used in many areas, such as resources …

Optical remote sensing image change detection based on attention mechanism and image difference

X Peng, R Zhong, Z Li, Q Li - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
This study presents a new end-to-end change detection network, called difference-
enhancement dense-attention convolutional neural network (DDCNN), that is designed for …

Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review

A Vali, S Comai, M Matteucci - Remote Sensing, 2020 - mdpi.com
Lately, with deep learning outpacing the other machine learning techniques in classifying
images, we have witnessed a growing interest of the remote sensing community in …

Deep learning based multi-temporal crop classification

L Zhong, L Hu, H Zhou - Remote sensing of environment, 2019 - Elsevier
This study aims to develop a deep learning based classification framework for remotely
sensed time series. The experiment was carried out in Yolo County, California, which has a …